How ML /I works

Revised First Edition

April 2004

P.J. Brown, R.C. Saunders, R.D. Eager

Copyright © 1971, 2004 P.J. Brown, R.C. Saunders, R.D. Eager

Permission is granted to copy and/or modify this document for private use
only. Machine readable versions must not be placed on public web sites or F'TP
sites, or otherwise made generally accessible in an electronic form. Instead,
please provide a link to the original document on the official ML/I web site
(http://www.mll.org.uk).

Table of Contents

1 Introduction — thestacks.................. 2
1.1 BSTACK ... 2

1.1.1 Implementation of MCNODEF, etc. 3

1.2 FSTACK ..ttt 3

2 Formats of stack entries for constructions ... 5

2.1 Format of Construction Namesccvuiriininenn... 5

2.1.1 Format of Information Blocks.................... 6

2.1.1.1 Warning Marker 6

2112 SKID 6

2.1.1.3 Substitution macro..................... 6

2114 Imsertooniiii . 7

2.1.1.5 Operation macro....................... 7

2.1.2 Format of Secondary Delimiter 8

3 Information stacked at calls or inserts....... 9
4 Setting up new constructions.............. 11
4.1 Details of EVTREE cOde. ovoioie e 13

4.2 Details of MKROOM routine 14

5 Scanning of constructions 15
5.1 USe Of SDB ...ttt e e 15

References............. ..., 18
Appendix A Description of Uses of Variables.. 19

Appendix B List of subroutines and code sections
in L. i i iiiaaannas 22

Concept Index........ ..., 24

Preface

These notes have been prepared to help implementors of ML/I understand how the logic
works. Within these notes references are sometimes made to line numbers on a listing of the
MI-logic of ML/I. These refer to version AIB dated December 1970. Listings are divided
into two parts: declarations, which occupy about 270 lines, and code, which occupy about
2170 lines. Line numbers start again at one in the code part.

Periodically minor changes are made to the Ml-logic, so line numbers are subject to
slight change. However, no major changes have been made for the last three years.

Preface to the Revised First Edition

This Edition has been rewritten in Texinfo, so that it can be published in both printed and
machine readable form; this has necessitated some re-wording and re-ordering of the text.
Some minor corrections and clarifications have also been made, but the text still describes
version AIB. The references have been updated to reflect the most up to date versions of
relevant documents.

2 How ML/I works — Revised First Edition

1 Introduction — the stacks

The two stacks occupy all available free storage. The forwards stack (FSTACK) and the
backwards stack (BSTACK) are organised as follows:

Fom + (low address)
| |
| | FSTACK
e +

FFPT ---> | |
| Unused |
| |
\N/\N/N/NININININININININY
\N/\N/N/N/NININININININ/N/
| |
| Unused |
e +

LFPT ---> | |
| [BSTACK
| |
| |
et +

ENDPT ---> (high address)

FFPT points at the first free location on FSTACK, and LFPT points at the last used location on
BSTACK. If the stacks meet, the process is aborted. In general, FSTACK contains permanent
information and, at the top, ephemeral text. BSTACK contains temporary information and
operates as a pushdown list (the word “top” in relation to FSTACK and BSTACK means the
movable end, i.e. the one described by FFPT or LFPT respectively).

1.1 BSTACK

Information is added to BSTACK under the following circumstances:

a. When a macro call or insert is performed, a block of information (see Chapter 3 [In-
formation stacked at calls or inserts|, page 9) is stacked. When the evaluation of the
call or insert is complete, the stack is reset to its state on entry.

b. Each of the local macros MCDEF, MCWARN, MCINS and MCSKIP causes a definition to be
placed on BSTACK. If a local NEC macro is the first such to occur in the current text,
then a new hash table, local to the current text, is reserved at the top of BSTACK.

¢. Each placing of a label, other than in the source text, causes an entry to be made at
the top of BSTACK. These entries have form:

Chapter 1: Introduction — the stacks 3

e +
| pointer |
e +
| number 1 |
e +
| number 2 |
e +
| number 3 |
e +

where:

pointer is a pointer to the next item in the chain of labels local to the current text.
NULLPT means end of chain.

number 1 is the label number.

number 2 is the offset of the position of the label from the end of the text (i.e. from
STOPPT).
number 3 is the line number in which the label is placed.

d. During the scanning of a nested construction, a block of information describing the
containing text is stacked.

e. The top of BSTACK is used as working storage during the setting up of construction
definitions.

Note that:

e Entries of type ¢) and d) may be interspersed; they are automatically deleted at the
end of a piece of text.

e Entries of type d) or e) only occur at the top of BSTACK.
1.1.1 Implementation of MCNODEF, etc.

The hash table contains a slot which contains the maximum BSTACK address at which a
local macro definition may occur. Similar slots exist for other constructions (skips, inserts,
warning markers).

Initially the slot points at the end of BSTACK, and hence all definitions are in use. At a
MCNODEF the slot is reset to contain the current value of LFPT, thus temporarily invalidating
all the local macros on BSTACK. This happens in a similar way, using the appropriate slot,
for MCNOSKIP, MCNOINS and MCNOWARN.

The CKVALY subroutine checks whether a construction is valid.

1.2 FSTACK

FSTACK has the following format:

4 How ML/I works — Revised First Edition

Fom + (low address)
| global macro definitions |
oo +
| permanent variables | Pn
| (numbers) |
| | P2
| | P1
o +
PVARPT --> | no. of permanent variables |
e e et +
INFFPT --> | |
(for source | source text |
text) | I
| |
e +
INFFPT --> | workspace for operation |
(for operation | macros |
macro) | I
oo + (high address)

New global definitions are added below the permanent variables, and the rest of the stack
is shifted up to make room for them.

When an operation macro is entered, FSTACK is used to set up the values of its argu-
ments. It is also used for workspace in setting up delimiter structures. When an exit is
made from an operation macro, all the workspace is cleared.

When the source text has been processed, it is cleared from FSTACK. However, in the
case of a call (or insert), the entire call has to be read in and processed before it can be
deleted. Outside of calls, the GTATOM subroutine clears all source text from FSTACK at every
possible opportunity.

Chapter 2: Formats of stack entries for constructions 5

2 Formats of stack entries for constructions

When a new construction is defined it is set up on FSTACK or BSTACK, depending on whether
it is global or local respectively.

Names of constructions are linked in hash chains for speedy recognition. There are
separate chains for locals and globals.

The name of an atom of a delimiter is represented by a LID (see [2], section 6.1.2),
which consists of the length of the atom, represented as a number of characters, followed
by the character string representing it. For example:

+-———- +-———- +————- +-———- +

[3 I P | I I G |
+————- +————- +————- +————- +

The name of a delimiter is represented by the concatenation of the atoms which make it
up- The atoms are separated by one of the following markers, which are numbers:

WITHMK this means spaces are not allowed between the atoms.
WTHSMK this means spaces are allowed between the atoms.

The keyword SPACES is implemented thus:
a. SPACES WITH and SPACES WITHS are both treated as SPACE WITHS.

b. An occurrence of SPACES at the end of a delimiter name is represented as a space with
the marker SPCSMK following. Hence SPCSMK can only occur at the end of a delimiter
name.

2.1 Format of Construction Names

The names of constructions take the following format:

Fom - +
part 1 | pointer |
e +
part 2 | number |
o +
| (name) I

part 3
e +
part 4 | number |
e +
part 5 | switch |
Fom +
part 6 | (information block) |
et +

where:

part 1 Hash chain. Absolute pointer. The marker NULLPT indicates the end of a chain.

part 2

part 3

part 4

part 5

part 6

How ML/I works — Revised First Edition

Orlink. Relative pointer to alternative names. The marker ENDCHN indicates
the end of a chain.

Name. Sequence of LIDs.

Nextlink. Relative pointer to chain of successors. ENDCHN indicates the end of
a chain, i.e. a closing delimiter. EXCLMK indicates an exclusive delimiter (the
values of WITHMK and WTHSMK must be chosen so that they are not identical with
possible values of part 4).

Type. Switch indicating type of construction. 1 for macro, 2 for warning marker,
3 for insert, 4 for skip.

Information block. The format depends on the type of the construction (see
Section 2.1.1 [Information Block Format|, page 6). If a construction has several
names, each has its own information block.

2.1.1 Format of Information Blocks

The first number in an information block indicates whether it belongs to a straight scan or
normal scan substitution macro, to an insert or to an operation macro. Other constructions
are treated separately.

2.1.1.1 Warning Marker

The information block is null.

2.1.1.2 Skip

The information block for a skip is as follows:

where:

part 1

part 1 | switch I

Attributes. Switch indicating the skip’s attributes. Only the least significant
three bits are used. Counting from the least significant end of the storage unit,
starting at zero, the bits are assigned as follows. A value of 0 means the option
is not set, and a value of 1 means the option is set.

bit 0 Delimiter option.
bit 1 Text option.
bit 2 Matched option.

2.1.1.3 Substitution macro

The information block for a substitution macro is as follows:

Chapter 2: Formats of stack entries for constructions 7

Fmm +
part 1 | number |
o +
part 2 | number |
Fom +
part 3 | number |
o +
part 4 | number |
o +
where:
part 1 This part is optional, and may be omitted completely. If present, it must have
the value STRMK, and indicates that the macro is straight-scan. If absent, the
macro is normal-scan.
part 2 Relative offset of end of replacement text (more exactly, the character beyond
the end of the replacement text).
part 3 Relative offset of start of replacement text.
part 4 Number of temporary variables (the capacity of the macro).
Ezample

MCDEF ABC AS XYZ

gives rise to:

- +
I I
v I
e s e T s et T e e Rt Sl et
|X|Y|Z| hash chain | ENDCHN |3|A|B|C| ENDCHN |1]-8]-12]3]
+—+—+—+—————t————— ————F—F—F————————F—F——F+———+—+
- I
I I
e il Rt +

assuming that each “box” occupies one unit of storage of the correct kind.

Note that parts 2 and 3 are negative and part 1 positive, so the presence or absence of
part 1 can be found by the sign of the first number in the information block.

2.1.1.4 Insert

The information block for an insert is as follows:

e +
part 1 | number |
o +
where:
part 1 Type. Indicates the type of insert:

value 3 Indicates unprotected insert.

value 2 Indicates protected insert.

8 How ML/I works — Revised First Edition

2.1.1.5 Operation macro

The information block for an operation macro is as follows:

e +
part 1 | number |
e +
part 2 | number |
e +
where:
part 1 Type. Index for TEST statement in MI-logic (circa line 557) which selects the
code to deal with an operation macro.
part 2 Class. Indicates class of operation macro, as follows:

LOCMK (value 1)
indicates local NEC macro.

OPMK (value 0)
indicates other operation macro.

2.1.2 Format of Secondary Delimiter

Information concerning secondary delimiters is stored as follows:

o +
part 1 | number |
o +
| (name) I
part 2
o +
part 3 | number |
o +
where:
part 1 Orlink. Relative pointer to alternative names. The marker ENDCHN indicates
the end of a chain.
part 2 Name. Sequence of LIDs.
part 3 Nextlink. Relative pointer to chain of successors. ENDCHN indicates the end of

a chain, i.e. a closing delimiter. EXCLMK indicates an exclusive delimiter (the
values of WITHMK and WTHSMK must be chosen so that they are not identical with
possible values of part 3).

Chapter 3: Information stacked at calls or inserts 9

3 Information stacked at calls or inserts

A block of variables is a group of variables that describe in some way the state of ML/I.
When ML/I encounters a situation involving nesting, these blocks often need to be stacked
so that they can be restored to their original state when the nested activity is complete.
Blocks are fully described in Chapter 5 of [2]. Each block has a name. The most important
block is the one that describes the current state of scan; this is called the SDB (scanning
description block). Another important block is the OPDB, which describes the current state
during processing of an insert or an operation macro.

The following information is stacked on BSTACK when a substitution macro is called:

tom— - + (low address)
| number | last temporary variable \
o + |
| . I |
| . I |
| . | | (1)
o + |
| number | T1 |
o + |
TVARPT ---> | number | number of temporary variables /
Fo— +
| pointer | NULLPT - end of argument vector \
Fo———————— + |
| pointer | pointer beyond end of last delimiter |
+o—— + |
| pointer | pointer beyond end of last argument |
o + |
| pointer | pointer to start of last argument |
Homm + I (2)
| . I |
| . I |
| . I |
Fom—————— + |
| pointer | pointer beyond end of first argument |
o + |
| pointer | pointer to start of first argument /
Fomm - +
ARGPT —+-> | I\
| | | | Contents of SDB when scanning of
STAKPT -+ | (various) | | previous text was suspended; note
| | | the first item in this SDB is
| | | ARGCT, the number of arguments
| I/

o + (high address)

In the above, (1) is the temporary variable vector, and (2) is the argument vector.

How ML/I works — Revised First Edition

When an operation macro or insert is called, the following information is stacked:

o +
TOPSPT ---> | |
I I
| (various) |
I I
I I
o +
| . |
| . |
| . |
o +
DBUGPT —+-> | |

| | [
STAKPT -+ | (various) |

(low address)

\

Previous contents of OPDB; this is only
stacked if it is already in use, i.e.

if OPLEV (level of nesting) exceeds unity.

I
I
I
/

\
| Argument vector (as before, see above)
/

SDB (as before, see above)

\
I
I
I

/
(high address)

When the argument of an insert or operation macro is evaluated, no further stacking is

necessary.

If an insert causes an argument or delimiter to be inserted, then the stack is partially
collapsed by setting LFPT as STAKPT (see above diagram) before evaluating the inserted text.
When the inserted text has been evaluated, the stack is, of course, reset to its state before

the insert.

Chapter 4: Setting up new constructions

4 Setting up new constructions

A relatively large and complicated section of the logic is devoted to setting up definitions
of constructions. The same code, EVTREE, is used to set up the delimiter structures of all
constructions. When EVTREE is entered, FSTACK is thus:

e + (low address)
INFFPT —--> | I\
| | |
| (various) | | replacement text (for macros only)
| | |
| L/
Fommm +
ERIAPT ---> | I\
| | |
| | | value of argument describing
| | | delimiter structure
| | |
| L/
Fom— - + (high address)
STOPPT -+->
|
FFPT -+

The code labelled EVTREE and subroutine GETDEL build up the new delimiter structure at
the top of FSTACK. There is a block of information, the ALL block, associated with 0PT-ALL
brackets and this block is stacked on BSTACK at each OPT and restored at each ALL. BSTACK
also contains information about nodes. The entry for a node depends on whether it has
been placed yet. When a node has been placed, its stack entry is:

S L + (low address)
| number | node number
Fm—————— e +

| switch | value 1
Fm—————— e +

| pointer | chain pointer
Fo——— - + (high address)

The chain pointer points to the orlink of the delimiter (or head of chain of delimiters)
designated by the node.

For a node that is gone to before being placed, the stack entry is (until the placing
occurs):

Fo———— + (low address)
| number | node number
i +

| switch | value O
fo———— +

| pointer | chain pointer

P — + (high address)

How ML/I works — Revised First Edition

The chain pointer points to the chain of nextlinks. Each nextlink is to be filled with the
node address when the node is finally placed. Entries are arranged on BSTACK as follows:

to—m - + (low address)
LFPT ---> | |
| . | stacked ALL blocks
| . |
e +
LNODPT ---> | |
| . | node entries
| . |
Fo— + (high address)
TOPSPT —--->

Note that when a new node entry is made, all the ALL blocks are shifted up to make room.
After EVTREE has finished, the top of FSTACK is:

/N/\N/\/\/\/ (low address)
| . |

e +

| . |

| . | replacement text (if a macro)

| . |

F————————— +

| x x x x |

lx x x x x| representation of structure, i.e.
| x x x x | the evaluated form of an argument
Ix x x x x| in the original source text (now
| x x x x | (finished with)

lx x x x x|

oo +

| . |

| . | final encoded form of structure

| . |

o + (high address)

In the case of a macro, the delimiter structure is shifted up to fill in the dead space. After
this has been done, the stacks have the following form in all cases. First, FSTACK:

Chapter 4: Setting up new constructions

o + (low address)
[. | global definitioms

(AA) —==> 4 +
| . |
|) | permanent variables
| . |
Fom +
| . | original source text
Fo— +
| x x x x|
|Ix x x x x| material to be discarded
| x x x x |
to—————— +

STOPPT ---> | . |
| . | new definition
| . |
o + (high address)

FFPT -—=>

OFFSET gives the offset from STOPPT of the start of the chain of names of the new definition.
Now BSTACK:

tm—— +

TOPSPT —---> | . | stack entry for operation macro.
| . | OPDB; this only appears if OPLEV
| . | exceeds unity
dm———— +
| . |
[. | arguments
| . |
- - - - - +

STAKPT ---> | . |
| . | SDB
| . |

(BB) ——-> +————————— +

In the global case, the new definitions must be placed at (AA); in the local case, at (BB)
and upwards. The latter case is quite simple. The SDB is, of course, unstacked before the
new definition is moved on top of it.

In the global case, the MKROOM subroutine makes a “hole” of the required size at (AA).
The new definition is then moved into the hole.

4.1 Details of EVTREE code

A number of switches are used in checking the syntax of the structure representation. These
are as follows:

NODESW on if a node is legal in next position.

KEYSW on if a keyword is legal in next position.

How ML/I works — Revised First Edition

CONSW used in checking correctedness. See table below.
EXITSW true only if an exclusive delimiter has been found.
Note that correctedness checking is inadequate; the following case is not detected:

OPT X N1 ALL N2 XX N1 XXX

Here, XX is not connected, but this is not detected as it is preceded by a node. The
tables below indicate how the checking is performed; it is all carried out inside the GETDEL
subroutine.

at after after after after after after

start del node OPT OR ALL WITH
NODESW T T F F T(U) T(U) F
KEYSW T T U F F T F
CONSW T T(U) T U ? F I

In the above, T means true, F means false, U means unchanged, I means immaterial and ?
means undefined. Additional rules are:

if node is placed: =~ MEVAL must be nonzero NODEPT can be null
if node is gone to: NODEPT must not be null
at delimiter: NODEPT can only be null if CONSW is true.

4.2 Details of MKROOM routine

This routine makes room for a new global definition or extra permanent variables. FSTACK
is as follows:

o + (low address)

| . | global definitioms

Fommm + <-- (CO)

| . | permanent variables (number given by PVNUM)
PVARPT ---> | . |

| . | text

FFPT -——=>

MKROOM makes space for a block of length IDLEN to be inserted at (CC). All pointers to the
text that have been stacked on BSTACK are adjusted by IDLEN.

Chapter 5: Scanning of constructions

5 Scanning of constructions

The scanning of calls and skips may involve nesting. When a nested construction is encoun-
tered, the following information is stacked on BSTACK:

DELPT head of chain of delimiters being searched for.
MTCHPT pointer at orlink of name of construction.
MCHLIN line count at start of construction.

CLLFPT points to the latest block of information stacked (CLLFPT is used by the error routine
that is invoked if stack overflow occurs).

5.1 Use of SDB

The SDB describes the current state of the scan, and is always stacked when a nested
construction is encountered. Part of the SDB, the EDB, is for error message production.
Some variables in the SDB have different uses depending on the state of processing. The
table that follows shows the meanings of the variables in the SDB in each of the possible
states.

“Calling value” is the value that was in force when the current insert or macro was
called. “Containing text value” applies to the insertion of arguments and delimiters, and
means the value in force when the text containing the argument or delimiter was being
evaluated.

The following pages indicate the uses of variables declared in the SDB.

How ML/I works — Revised First Edition

pmm e e Fo—mm + - et B +
[1. | 2. | 3. | 4. I

name | scanning | scanning | scanning | evaluating |

of | source | replacement | argument or | operation macro |
variable | text | text | delimiter | or first insert |

pmm o m e e e e B +
ARGCT | counts number of arguments when nested construction | not used |

| is scanned I I
o e e e e e e L P o +
STAKPT | NULLPT | points at latest SDB on stack |
ARGPT | NULLPT | points at argu- | containing text | calling value |

| | ments of macro | value | |

pmm e S e EE e ettt e +
DBUGPT | not used | points at orlink| points at argu- | points at |

| | preceding macro | ment vector in | argument vector |

| | name | which argument | |

| | | or delimiter I [

[| | is included | |

pmm o m e e o o +
MCHLIN | set to current value of LINECT when a nested | not used |

| construction is encountered | |

LINECT | line count of current text | not used |
ARGNO | not used | not used | number of | number of argu- |

| | | argument or | ment currently |

I | | delimiter | being processed |
o o m o et ettt e +
DBUGSW | 0 | 1 | 2 for operation | 5 |

| | | macro argument | |

| | | 4 for substitu- | |

[| | tion macro | |

| | | argument | |

| | | 6 for delimiter | |
o o m o et ettt o +
HASHPT | points at local hash table | U insert: | calling value |

| | calling value | |

| | P insert: | I

| | containing I I

| | text value | |
o e e o o e +
TVARPT | NULLPT | points at temp- | containing text | calling value |

| | orary variables | value | |
o o mm o o e ittt +
MTCHPT | when a nested construction is encountered, this is | used as |

| set to point at the orlink preceding the name of | workspace |

| the construction | |
o et e +
SPT | points at last scanned character | used in scanning]

| | values of |

| | arguments [
o o m e T e e e o +
STOPPT | NULLPT | points beyond last character of | points beyond |

| | current text | end of latest |

I I | argument |

LABPT | NULLPT | head of chain of labels | not used |

pmm o m e e o o +
INFFPT | points at start | not used | for operation | value of FFPT |

| of source text | | macro argument, | when operation |

| on FSTACK | | as 4., otherwise| macro was |

| | | undefined | called |

Chapter 5: Scanning of constructions

e e e e omm + - s T +
I I 1. | 2. | 3. | 4. I
name	scanning	scanning	scanning	evaluating
of	source	replacement	argument or	operation macro
variable	text	text	delimiter	or first insert
e o m o oo et et T +				
SKVAL	if not scanning call or insert then number of	not used		
	designated label for forward GOTO; zero otherwise.			
	if scanning call or insert then set to			
	(-1 - [above value])			
o e oo +				
OHSW	true if text has its own local hash table.	not used		
	false if hash table of another piece of text is			
I	being used I I			
e e e +				
SKLIN	if in forward GOTO then line number in which	not used		
	MCGD occurred			
o e oo +

Descriptions of further variables used in the logic of ML/I are given in Appendix A. In the
future these comments will be incorporated into listings of the logic.

How ML/I works — Revised First Edition

References

1. Brown, P.J. and Eager, R.D., ML/I User’s Manual, Sixth Edition.
2. Brown, P.J. and Eager, R.D., Implementing software using the L language.

Appendix A: Description of Uses of Variables

Appendix A Description of Uses of Variables

The following summarises the uses of important variables in the MI-logic of ML/I.

Variable Declared Meaning
in line
ALLPT 61 head of chain of nextlinks to be attached to delimiter following
ALL
ARGCT 13 in SDB
ARGLEN 49 length of value of current argument
ARGNOD 24 in SDB
ARGPT 19 in SDB
BESLIN 123 best-so-far value of LINECT
BESPT 96 best-so-far value of SPT
BESTPL 120 switch value used in basic scan routine
BFNDPT 87 best-so-far value of FNDPT
BINDIC 111 best-so-far value of INDIC
BINFPT 89 best-so-far value of INFOPT
CALTYP 124 first number in information block
CHANPT 94 for chaining
CHLINK 116 chain link
CINFPT 103 points at information block
CLLFPT 101 points to top entry after scanning information is stacked
CONSW 150 for syntax checking
COPDSW 131 for skips. Reflects setting of delimiter option.
COPTSW 130 for skips. Reflects setting of text option.
DBUGPT 20 in SDB
DBUGSW 25 in SDB
DELCT 145 count of delimiters
DELPT 104 head of chain of delimiters
ENDPT 71 points at end of BSTACK
ERIAPT 95 points at value of operation macro argument
ETEMPT 84 points at error block (temporary storage for EDB)
EXIDPT 140
EXITSW 151 for syntax checking
FFPT 90 points to first free location on FSTACK
FLAGPT 158 points at flag
FNDPT 86 points at LID when a name is found
GHSHPT 845 points at global hash table
GLBWSW 705 value 6 if there is a global warning; value 7 otherwise
HASHPT 30 in SDB
HTABPT 97 points at current hash table
IDLEN 119 length of current identifier
IDPT 98 points at current identifier
INDIC 115 contents of nextlink
INFFPT 34 in SDB

INFQPT 88 points beyond currently matched LID

INSW
INVOCT
KEYSW
KNPT
LABPT
LEVEL
LFPT
LINECT
LINKPT
LNODPT
MASKSW

MCHLIN
MEVAL

MHSHPT
MTCHPT
MTYPE
NARGPT
NDEFPT
NEGVAL
NESTLV
NNODPT
NODEPT
NODESW
NTYPSW
OFFSET
OHSW
OLDSPT
OLIDPT
OLLFPT
OpP1
OPLEV
OPSW
OPTHPT
OPTLEV
OPTPT
OPTYP
PARNM
PARPT
PARSW
PRSTPT
PRT1PT
PRT2PT
PVARPT
PVNUM
SKIPLV

132
113
149
83
33
112
73
23
48
139
129

22
122

46

31

175
102
143
162
109
138
137
148
53

121
37

142
157
141
160
110
164
663
146
62

50

117
91

128
172
173
174
72

74

108

How ML/I works — Revised First Edition

to set DBUGSW, and as implied parameter to SETPTS
count of macro calls
for syntax checking

in SDB

level of macros and inserts

points at top of BSTACK (last used location)

in SDB

link for STKARG

points at topmost node entry on BSTACK

mask used to indicate which types of construction are

recognised
in SDB

miscellaneous. Used for numerical values calculated at macro

time
value of HASHPT when macro was called

in SDB

type of items to be printed

points at argument vector

destination of new definition

indicates if result is to be negative

nesting level of calls and skips during scanning
points at current node entry on BSTACK

head of chain of links to be attached to next delimiter
for syntax checking

type of construction being defined

offset in hash table

in SDB

previous value of SPT

temporary storage for IDPT

previous value of LFPT

LHS operand

level of operation macros and inserts
“operation expected” switch

head of orlink chain

level of OPT-ALL brackets

last entry on orlink chain

type, e.g. global, local, insert. Also other uses
parameter of type number

parameter of type pointer

parameter of type switch

start of current hash table

counts down hash table

follows down hash chains

points at permanent variables

number of permanent variables

Appendix A: Description of Uses of Variables

SKLIN
SKVAL
SPT
SQNUM
SQPT
SQSW
STAKPT
STOPPT
SUM
TEM1PT
TEMP
TEMPSW
TEMPT
TIDPT
TLINCT
TOPSPT
TSPT
TVARPT
TYPE
VARPT
VARSW
WNIDPT
WNSPT
WSW

36
35
21
51
47
52
18
32
161
93
114
127
92
99
125
45
100
29
118
156
165
106
105
166

in SDB

in SDB

in SDB

safe variable, miscellaneous uses
safe variable, miscellaneous uses
safe variable, miscellaneous uses
in SDB

in SDB

running total

temporary number
temporary switch

temporary pointer

temporary storage for IDPT
temporary storage for LINECT
points at latest OPDB on BSTACK
temporary storage for SPT

in SDB

type of construction name
points at vector of variables
“variable expected” switch
temporary storage for IDPT
temporary storage for SPT
written argument or delimiter

Appendix B List of subroutines and code sections

The following lists all of the sections, subroutines and other important areas of code in the

L source.
Name

ADVNCE
BUMPFF
CHATOM
CHEKID
CKVALY
CMPARE
CORECT
DECALV
DECLF
DEFSUBS
ENCALL
ENVPR
ER1TST
ERMTST
ERR
ERSIC
ERSNW
ERTEST
GARGCH
GETDEL
GETEXP
GMEADD
GSATOM
GSRATM
GTATOM
INVALS
JOINCH
KEYSRC
LUDEL
LULAYK
MAIN
MAINSUBS
MCALTERMAC
MCDEFMAC
MCGOMAC
MCINSMAC
MCLENGMAC
MCNO---
MCNOTEMAC
MCPVARMAC

in L

Section

MAINSUBS
MAINSUBS
MAINSUBS
MAINSUBS
MAINSUBS
MAINSUBS
MAINSUBS
MAINSUBS
MAINSUBS

MAINSUBS

MAINSUBS
ERR

ERR

ERR
DEFSUBS
MAINSUBS
DEFSUBS
MAINSUBS
MAINSUBS
MAINSUBS
DEFSUBS
MAINSUBS

DEFSUBS
DEFSUBS
MAINSUBS
MAINSUBS

OPMACS
OPMACS
OPMACS
OPMACS
OPMACS
OPMACS
OPMACS
OPMACS

How ML/I works — Revised First Edition

Type

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Section
Subroutine
Section
Subroutine
Subroutine
Section
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Section
Subroutine
Subroutine
Subroutine
Subroutine
Section
Section
Code for
Code for
Code for
Code for
Code for
Code for
Code for
Code for

Declared
in line

383
395
406
418
430
442
460
471
484
1448
495
2116
511
1773
1712
1743
1759
1450
523
1460
535
584
610
1610
626
8
1622
1639
652
665
26
380
1024
1238
1056
1260
1135
1216
1148
1161

Appendix B: List of subroutines and code sections in L

MCSETMAC
MCSKIPMAC
MCSUBMAC
MCWARNMAC
MKROOM
OPEXIT
OPMACS
PLNODE
PRARG
PRCTXT
PRENV
PRERR
PRID
PRLID
PRLINO
PRMISS
PRNAME
PRNFND
PRNUM
PRSCAN
PRTABL
PRTYPE
PRVIZ
RESSP
SBSTPL
SETPTS
SETYPE
SKLAB
SMSKSW
SNODCH
SUBCHK
TEBEST
TESDEL
TESPAC
TEWITH
UNOPDB
UNSDB

OPMACS
OPMACS
OPMACS
OPMACS
MAINSUBS
MAINSUBS

DEFSUBS
MAINSUBS
ERR
ENVPR
ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR
MAINSUBS
ENVPR
ERR

ERR
MAINSUBS
MAINSUBS
MAINSUBS
ERR
MAINSUBS
MAINSUBS
DEFSUBS
MAINSUBS
MAINSUBS
MAINSUBS
DEFSUBS
MAINSUBS
MAINSUBS
MAINSUBS

Code for
Code for
Code for
Code for
Subroutine
Subroutine
Section
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

1175
1277
1191
1230
688
726
1022
1652
737
1834
2118
1913
1923
1965
1982
1993
2027
2041
2053
761
2137
2065
2086
774
796
808
2100
821
837
1682
847
884
867
1697
948
959
974

Concept Index

B

backwards stack
backwards stack, use of

C

call, information stacked..............
construction name, format of
construction, new.....................

E

EVIREE

F

format, information block
format, of construction name
format, secondary delimiter...........
forwards stack
forwards stack, use of

I

How ML/I works — Revised First Edition

M

macro, operation

macro, substitution L.

MCNQO. .. macros

MKROOM.....

N

new construction

@)

operation macro

S

stack, backwards
stack, forwards .
substitution mac

\'%

TO . . . e

validity, checking, ..

A%

warning marker .

