ML /I User’s Manual

Sixth Edition

R.D. Eager, P.J. Brown

September 2018

This manual applies specifically to version CKP of ML/I. Some features may not be sup-
ported by earlier versions; conversely, later versions may support additional features.

Copyright © 1966,1967,1968,1970,1986,2004,2009,2010,2018 R.D. Eager, P.J. Brown

Permission is granted to copy and/or modify this document for private use
only. Machine readable versions must not be placed on public web sites or F'TP
sites, or otherwise made generally accessible in an electronic form. Instead,
please provide a link to the original document on the official ML /I web site
(http://www.mll.org.uk).

http://www.ml1.org.uk
http://www.ml1.org.uk

Table of Contents

ML/I User’s Manual — Sixth Edition............ 1
1 Introduction.................. 2
1.1 General description. 2
1.2 Organisation of this manual 2
1.3 Notation for describing syntax.............ccoiiiiiiiiiii .. 2
1.4 Further points of notation.............. ... i . 3
1.5 Improving ML/Io 3
2 The environment and its constituents......... 4
2.1 Basicaction of ML/L...... i 4
2.2 Character Setviiii 4
2.3 Xt ottt 4
2.4 Macros and delimiter structures,)
2.4.1 Examples of macros.........oouiiiiiiiii i 6
2.4.2 Delimiter structures..........cooiiiiiiiiiiiiiiiiiiina... 6
2.4.3 Optional and repeated delimiters 7
2.4.4 Macro definitions. ...t 8
2.4.5 The difference between macros and subroutines............ 8
2.4.6 Impossible replacements............ i 8
2.5 Introduction to macro-time variables and statements............ 9
2.6 INSertS ...ttt 9
2.6.1 Macro-time variables i 9
2.6.2 Initialisation of macro variables........................... 10
2.6.3 Subscripts and macro expressions.oiiiaa.... 11
2.6.4 Character variables.............. ... 12
2.6.5 Integer overflow i 12
2.6.6 Macrolabels....... ..o 12
2.6.7 Macroelements 12
2.6.8 Imsert definitions...........o i 12
2.6.9 Examples of inserts.............oiiiiiiiiiii 14
2.7 KIS « ettt 15
2.7.1 Matched skips and straight skips.............. 16
2.7.2 Literal brackets i 17
2.7.3 Example of a matched skip............. 17
2.7.4 Warning markers. ... 17
2.7.5 Stopmarkers........ .. 18
2.8 Summary of the environment............... L. 19
2.9 Normal-scan macros and straight-scan macros * 19

2.10 Name environment used for examples......................... 20

3 Text scanning and evaluation................. 21
3.1 Nesting and recursioniiiiiiiiiiiiiii.. 21
3.2 Call by name ...ttt e 21
3.3 Details of the scanning processooiiiiiii.. 21
3.4 The method of searching for delimiters........................ 22
3.5 Exclusive delimiters * 23
3.6 Startlines 24
3.7 Dynamically generated constructions * 25

4 Operation macros and their use.............. 26
4.1 Operation MACTOS . « .. .vvttt ettt ettt et 26
4.2 Use of literal brackets for surrounding operation macro arguments

... 26
4.3 NEC IMACTOS - vttt ettt ettt ettt et 27
4.4 Dynamic aspects of the environment *......................... 28
4.5 Protected and unprotected inserts *........... 29
4.6 Ambiguous use of names * 29
4.7 TImplications of rules for name clashes *........................ 30

5 Specification of individual operation macros

5.1

5.2

5.3

0.4

.. 32

Specification of delimiter structures 32
9.1.1 Keywords 33
5.1.2 The consequences of evaluation........................... 34
5.1.3 Introduction to more complicated cases *................. 35
5.1.4 Full syntax of structure representations *................. 36
5.1.5 Examples of complex structure representations *.......... 37
5.1.6 Possible errors in structure representations................ 38

The NEC MaCrOS . . ooi ettt ettt e 40
0.2.1 MCWARNttt e e e e e 41
D.2.2 MCINS . .ttt e e 42
D.2.3 MCSKIP. ...ttt e 43
B.2.4 MCDEF . .ottt e et e e 44
5.2.5 MCNOWARN, MCNOINS, MCNOSKIP and MCNODEF 46
5.2.6 MCWARNG, MCINSG, MCSKIPG and MCDEFG 47
D.2.7 MCSTOP. . .ottt e et e 48
0.2.8 MCALTER . ..ottt ittt et et 49

System functions..........c..o i 51
5.3.1 MCLENG. ...ttt ittt e e ettt 52
5.3.2 MCOSUB . .ottt ettt e et e e e 53

Further operation macros ... 54
Bl MOSET ..ttt t et e et e e e 55
5.4.2 MCNOTE. ...ttt e e e e 56
D.4.3 MCGOt 57
D.4.4 MCPVAR. ..ot e e 60

D.4.5 MCCVAR. ..ottt e 61

ii

6 Error messages i, 62
6.1 Example of an error message 62
6.2 Notes on context print-outsco .. 62
6.3 Count of errors. ... 63
6.4 Complete list of messages ..., 63

6.4.1 Illegal macroelement............ ...l 63
6.4.2 Arithmetic overflow L 63
6.4.3 Illegal input character........... i i, 64
6.4.4 Tllegal MACTO NAMEottt t ittt 64
6.4.5 Unmatched construction........... 64
6.4.6 Illegal syntax of argument value.......................... 65
6.4.7 Redefined label....... 65
6.4.8 Undefined label oo i i 65
6.4.9 Storage exhausted........... ... i 66
6.4.10 System eITOroiuiiint i 66
6.4.11 Subsidiary message.uuuutiiiii e 66
6.4.12 StatiStics.oviiiii 67
6.4.13 Version number and current constructions............... 67
6.4.14 Implementation-defined messages........................ 67

7 Hints on using ML/I.......................... 68
7.1 How to set up the environment................................ 68
7.2 Possible sources of error......... i 68

7.2.1 Jumping over expanded code 68
7.2.2 Generation of unique labels............ o 68
7.2.3 Lower case letters...........co i 68
7.2.4 Use of newlines in definitions............................. 68
7.2.5 Use of redundant spaces............c.ooiiiiiiiiiiiiina.n. 69
7.3 Simple techniques. ... 69
7.3.1 Interchanging two names, 70
7.3.2 Removing optional debugging statements................. 70
7.3.3 Inserting extra debugging statements..................... 71
7.3.4 Deleting a macro...........cooiiiiiiiiii i 71
7.3.5 Differentiating special-purpose registers and storage locations
.. 71
7.3.6 Testing for macrocalls, 72
7.3.7 Searchingoiiiiiii e 72
7.3.8 Bracketing within macro expressions...................... 72
7.3.9 Deletion from source text only............................ 72
7.3.10 Locating missing delimiters.................., 73
7.3.11 Handling line-oriented input............... 73
7.4 Sophisticated techniques *.............l 73
7.4.1 Macro-time loop 73
7.4.2 FExamining optional delimiters............................ 75
7.4.3 Dynamically constructed calls..................... 75
7.4.4 Arithmetic eXpression macroovuvueeeeineeenn.. 76
7.4.5 Formal parameter namescooiiiiiiiiiiia.. 77
7.4.6 Intercepting changes of state 77

iii

7.4.7 Remembering code for subsequent insertion............... 78

7.4.8 Constructions with restricted scopes...................... 79

7.4.9 Optimising macro-generated code......................... 80
7.4.10 Macro to create a macro ... 81

8 Use of system variables....................... 82
8.1 System variable overview........... i 82
8.2 Use of 810 89 it 82
Operation Macro Index........................... 85

Concept Index..............iiiiiii. 86

iv

ML/I User’s Manual — Sixth Edition 1

ML/I User’s Manual — Sixth Edition

This manual applies specifically to version CKP of ML/I. Some features may not be sup-
ported by earlier versions; conversely, later versions may support additional features.

Copyright (© 1966,1967,1968,1970,1986,2004,2009,2010,2018 R.D. Eager, P.J. Brown

Permission is granted to copy and/or modify this document for private use
only. Machine readable versions must not be placed on public web sites or FTP
sites, or otherwise made generally accessible in an electronic form. Instead,
please provide a link to the original document on the official ML /T web site
(http://www.mll.org.uk).

Preface

This manual describes ML/I in full detail, with examples of its applications. It is not
assumed that the reader has any previous knowledge of macro processors.

A shorter, simpler document describing ML/I is also available. This is called The ML/I
macro processor: a simple introductory guide. There is also a tutorial document, called
An ML/I tutorial, which is probably the best starting point for completely new users. A
paper describing how ML/I is implemented appeared in Communications of the ACM 13,
12 (December 1972), pp. 1059-1062; the book Macro Processors and portable software
(Wiley, 1974) contains further details.

Preface to the Sixth Edition

This edition is significantly changed from earlier editions. It incorporates, within the main
text, all current and new features of ML/I. It has also been rewritten in Texinfo, so that
it can be published in both printed and machine readable form; this has necessitated some
re-wording and re-ordering of the text.

http://www.ml1.org.uk
http://www.ml1.org.uk

Chapter 1: Introduction 2

1 Introduction

1.1 General description

ML/I is a general macro processor. It is general in the sense that it can be used to process
any kind of text. The text may be in any programming language or natural language, or it
may be numerical data. The most important use of ML /I is to provide users with a simple
means of adding extra statements (or other syntactic forms) to an existing programming
language in order to make the language more suitable for their own field of application.
This process of extension may be carried to the level where the extended language could
be regarded as a new language in its own right. Other possible uses of ML/I are program
parameterisation (e.g. a parameter might determine whether debugging statements are to
be included in a program) and various applications in text editing or correction and in data
format conversion.

This manual does not assume that the reader has any previous experience of macro
processors. However, the reader who is familiar with macro processors might be interested
in knowing the main features of ML/I before plunging into details. These features are:

e Macros with a variable number of arguments.

e Delimiters of the arguments of each macro are chosen by the user, and a macro may
have several possible patterns of delimiters, each with a different meaning.

e Macro-time integer variables.
e Macro-time assignment and ‘goto’ statements.
e No restrictions on nesting and recursion.

e Macro calls occurring anywhere in the text (i.e. calls do not have to appear in a par-
ticular field, nor do they have to be preceded by a ‘warning marker’).

e Comprehensive error messages.

1.2 Organisation of this manual

Chapters 2, 3, 4 and 5 of this manual describe ML/I in full detail. Chapter 6 describes error
messages, and Chapter 7 contains hints and examples. Readers may find it useful to look
ahead to the examples in Chapter 7 if they have any difficulty with the main text. Some
Sections of this manual can be omitted on a first reading; these are marked with an asterisk
(like this: *). This manual does not describe features of ML/I that are implementation-
dependent, e.g. operating instructions, character set, etc. Instead there is an Appendix,
which describes the implementation-dependent features, for each implementation.

1.3 Notation for describing syntax
The notation used in this manual to describe syntax should be self-explanatory. An example
of its use is the following description of a hypothetical IF statement:

IF {condition} THEN {statement};

As can be seen, a syntactic form is defined by concatenating its constituents. A constituent
that is itself the name of a syntactic form is enclosed in braces ({ and }). The remaining
constituents are literals.

Chapter 1: Introduction 3

A well-known notation is used to indicate parts of syntactic forms that may optionally
be repeated and/or omitted. In this notation, a constituent or series of constituents that
may optionally be omitted is written:

[{constituents} 7]
Constituents that may be repeated any desired number of times are written:
[{constituents} *]
and constituents that may be omitted or repeated are written:
[{constituents} *7]
Thus, if the above IF statement had an optional ELSE clause, it would be written:
IF {condition} THEN {statement} [ELSE {statement} 7];
and a hypothetical SUM statement which permitted any number of arguments, provided
there were at least two, might be defined:
SUM {argument} [,{argument} *];
Lastly, when there are several alternative forms for a constituent, these are written:
({form 1})
({form 2})
({2 D
L3
({form N})
Thus an expression might be defined as:
{variable} [(+) {variable} *7]
)
(%)
/)

Note that the asterisk means that the syntactic forms enclosed within the brackets may be
repeated; it is not required that identical text be written at each repetition.

1.4 Further points of notation

e When it is desired to emphasise the presence of a space, tab or newline in a piece of
text, this is done by writing {SPACE}, {TAB}, or {NL} respectively. Note that this is
simply a point of notation, and readers should be careful not to interpret an occurrence
of, say, {NL} in a specification as requiring that they write the characters {, N, L and }.

e An integer is said to be positive only if it is greater than zero, and negative only if it
is less than zero. Integers in ML/I are represented to a decimal base.

1.5 Improving ML/I

Readers are invited to criticise and suggest improvements in the specification of ML/I, in
the description in this manual or in a particular implementation, and in particular to point
out errors and ambiguities. Reports of implementation errors should be accompanied by
enough material to reproduce the error and, if applicable, references to the statements in
this manual that have been contravened.

Chapter 2: The environment and its constituents 4

2 The environment and its constituents

2.1 Basic action of ML/I

The basic action of ML/I is as follows. The user feeds to ML/I some text and an envi-
ronment. The purpose of the environment is to specify that certain insertions, deletions,
expansions, translations or other modifications are to be made in the text. ML/I performs
the textual changes specified by the user. This process is called evaluation of text, and the
text generated as a result of the changes is called the value text. The text being evaluated
is called the scanned text. In many simple applications of ML/I, the process of evaluation
consists of a good deal of straight copying, the value being the same as the original, but
periodically a change is made and the generated value text is different from the original
scanned text.

The purpose of this Chapter is to explain the mechanisms at the disposal of the user,
and to give examples of their use. All the possible constituents of the environment will be
described, and the resultant textual changes will be explained by describing the form of the
scanned text and the form of the corresponding value in each case. The mechanisms for
setting up the environment will be explained in subsequent Chapters.

2.2 Character set

The character set of ML/I (i.e. the set of allowable characters in the text it processes) is
implementation-defined (see Section 3 of the relevant Appendix). However, the character
set will normally contain the upper case letters A—Z, the lower case letters a—z, the numbers
0-9, and a number of characters that are not letters or numbers. Characters that are not
letters or numbers are called punctuation characters. If an implementation contains both
upper and lower case letters in its character set, then these are treated as entirely different
sets of characters, and it is not possible to use a lower case letter interchangeably with its
upper case equivalent. As will be seen, all the built-in symbols and characters that have
special meaning to ML/I are in upper case (e.g. MCDEF rather than mcdef, and S rather
than s).

2.3 Text

A feature of ML/T is that it does not consider text character by character, but in units of
atoms. An atom is a single punctuation character, or a sequence of letters and digits that
is surrounded by punctuation characters (assuming an imaginary punctuation character at
the beginning and end of the text). There is no restriction on the length of an atom. To
take an example, the text:

Pig , {TAB} LAC {SPACE} 4057

1 2 3 4 5 6

would be regarded as six atoms as shown. It is possible to make an exception to this rule
in special cases; see the description of system variable S6 in Section 8.2 [Use of S1 to S9],
page 82.

Chapter 2: The environment and its constituents 5

The following definitions will be used in the rest of this manual. Text is a (possibly null)
sequence of atoms. The source text is the text supplied as input to ML/I, and the output
text is the text derived from evaluating the source text. The physical form of the source
text and output text is implementation-defined (see Section 2 of the relevant Appendix).
The action of evaluating a particular piece of source text is called a process.

2.4 Macros and delimiter structures

Before defining a macro, it may be useful to consider the sort of text replacement that
macros are designed to achieve. The assembly language for a hypothetical X123 machine
will be used in several examples in this manual. Assume the user wants to introduce a new
instruction of the form:

ESUB X meaning ‘subtract X from the accumulator’

which does not exist in the X123 instruction set, but whose effect can be achieved by the
sequence of three X123 instructions:

CMA complement accumulator
ADD X add X to accumulator
CMA complement accumulator

The introduction of ESUB would be achieved as follows. The user would write the program as
if ESUB were an extra machine instruction. Before the program was assembled, it would be
passed through ML/I with ESUB defined as a macro name with the above three instructions
as its replacement text. ML/I would replace each occurrence of ESUB by its expanded
form, and the resultant output could then be assembled normally. Each piece of text to be
replaced is called a macro call, and the text corresponding to X above is called the argument
of the call (within the replacement text of ESUB it is necessary to specify that the argument
of the call should be inserted immediately after ADD. This is done by a constituent of the
environment called an insert, which will be described later).

This example serves as a simple illustration of the primary use of ML/I, namely to
serve as a preprocessor to an existing piece of software to allow users to introduce new
statements of their own design into the existing language. Each new statement must be
expandable in terms of the existing language.

Macros may have any number of arguments. Arguments are separated by predefined
atoms (or sequences of atoms) called delimiters. When defining a macro, the user specifies
what the delimiters are. The macro name is regarded as a delimiter, and is called the
name delimiter to distinguish it from the remaining delimiters, which are called secondary
delimiters. The delimiter following the last argument of a call is called the closing delimiter.
The general form of a macro call can, therefore, be represented as:

{name delimiter} [{argument} {secondary delimiter} *7]
Arguments may be null, but delimiters must consist of at least one atom.

Every time ML/I encounters in the scanned text an atom or series of atoms that has
been defined as a macro name, it searches for the secondary delimiters (if any) and then
replaces the entire macro call by the value of the replacement text for the macro. More
details of the way macro calls are scanned are given in Section 3.4 [The method of searching
for delimiters], page 22, and in Section 3.5 [Exclusive delimiters], page 23.

Chapter 2: The environment and its constituents 6

2.4.1 Examples of macros

It may be instructive at this stage to consider a few more examples of macros. These
examples, which are listed below, are all of simple macros with fixed delimiters. Macros
with more elaborate patterns of delimiters will be considered later. Note that ML/I could
be used to add these macros to any desired programming language, whether high or low
level.

Ezample 1
A macro to generate a loop, which has form:
DO {arg A} TIMES {arg B} REPEAT

Here the delimiters are DO, TIMES and REPEAT. DO is the name delimiter, and
TIMES and REPEAT are secondary delimiters. REPEAT is the closing delimiter.
ML/I does not require that macro calls be written on a single line, and calls
of this macro would tend, in practice, to span several lines of text.

Example 2
A macro of form:
MOVE FROM {arg A} TO {arg B};
The name of this macro consists of the two atoms MOVE FROM.
Ezxample 3
A macro to interchange two variables, which has form:
INTERCHANGE ({arg A}, {arg B}) {NL}

In this example, both the name and the closing delimiter consist of more than
one atom: the name is INTERCHANGE followed by a left parenthesis, and the
closing delimiter is a right parenthesis followed by a newline. Note that ML /I
does not, like some software, truncate long names such as INTERCHANGE.

Ezample /

Assume that within a program two different names, COUNT and CONT, have
inadvertently been used for the same variable. This error could be corrected
using ML/I, with CONT defined as a macro with COUNT as its replacement text.
Here the name delimiter, CONT, is also the closing delimiter.

The reader should, at this stage, appreciate why ML/I considers text as a sequence of
atoms rather than a sequence of individual characters. If the latter were the case, ML/I
would be liable to take names such as DOG and RANDOM as calls of the above macro DO, since
each name contains the letters DO. As the situation stands, however, the letters DO would
only be taken as a macro call if they were surrounded by punctuation characters.

2.4.2 Delimiter structures

The macros considered so far have had fixed delimiters. However, it is possible to have
macros with any number of alternative patterns of delimiters. As a very simple example of
this, consider the ESUB macro. In X123 Assembly Language, statements are terminated with
either a tab or a newline, and so it would be desirable to have both of these as alternatives
for the closing delimiter of ESUB.

In order to specify the pattern of possible delimiters of a macro, the user specifies a
delimiter structure. Each macro has its own delimiter structure, and other constituents of

Chapter 2: The environment and its constituents 7

the environment also have delimiter structures. A delimiter structure is a set of delimiter
specifications, each of which is a sequence of one or more atoms. These sequences of atoms
need not be distinct. One or more of these delimiter specifications are designated as names
of the structure. The remainder are secondary delimiters. With each delimiter specification
is associated a specification of its successor(s). This may be:

e null,
e another delimiter specification within the structure,

e a set of alternative delimiter specifications within the structure.

Successors specify what to search for next when scanning. A delimiter with a null successor
is a closing delimiter. As an illustration of the use of a delimiter structure, consider the
scanning of a macro call. During this scanning, each time a delimiter is found, the delimiter
structure of the macro being called is referenced to find the successor(s) of the current
delimiter, and subsequent text is then scanned to try to find this successor. This process
continues until a closing delimiter is found.

As an example of a delimiter structure, the delimiter structure of the ESUB macro would
contain three delimiter specifications with the following information about them:

a) ESUB {name} with b) or c¢) as its successor.
b) {TAB} secondary delimiter with no successor.
c) {NL} secondary delimiter with no successor.

The rules for setting up delimiter structures (see Section 5.1 [Specification of delimiter
structures], page 32) ensure that they have certain properties. Among these properties are
the following:

e If there is more than one name, each name is represented by a different sequence of
atoms.

e If a delimiter structure has alternative successors, each is represented by a different
sequence of atoms.

e The structure is connected. This means that it must be possible to reach each secondary
delimiter by a sequence of successors from some name.

2.4.3 Optional and repeated delimiters

It is possible, by designing a suitable delimiter structure, to have a macro with a variable
number of arguments; in particular, a macro with optional arguments and/or with an
indefinitely long list of arguments. For instance, suppose it is desired to implement a macro
with alternative forms:

IF {argument} THEN {argument}
END

and

IF {argument} THEN {argument}
ELSE {argument}
END

This is done by specifying that either ELSE or END is the successor of THEN. END is a closing
delimiter, and ELSE has successor END. As a second example, consider a macro of form:

Chapter 2: The environment and its constituents 8

SUM {argument} [(+) {argument} *7];
=)
This macro has an indefinite number of arguments, separated by plus or minus signs. Its
delimiter structure has four members as follows:

a) SUM name with b), ¢) or d) as successor.

b) + secondary delimiter with b), ¢) or d) as its successor.
c) - secondary delimiter with b), ¢) or d) as its successor.
d) secondary delimiter with no successor.

2.4.4 Macro definitions

Now that the basic concepts behind macros have been introduced, it is possible to explain
more exactly what makes up a macro definition. Macro definitions are the most important
constituents of the environment. A macro definition consists of:

a. A delimiter structure. The name delimiter(s) of this structure are the macro names.
b. A piece of replacement text.

c. An integer, exceeding two, called the capacity. The purpose of this is explained in
Section 2.6.1 [Macro-time variables]|, page 9.

d. An on/off option. If this option is on, the macro is called a normal-scan macro; oth-
erwise it is called a straight-scan macro. The effect of this option is explained in
Section 2.10 [Name environment used for examples], page 20.

The reader need not for the moment be concerned with (c) and (d), since nearly all macros
will be normal-scan and will have a capacity of three.

2.4.5 The difference between macros and subroutines

There is often confusion between the purpose of macros and the purpose of subroutines (or
procedures). Macros, however, always generate in-line code, and so this code is inserted as
many times as the macro is called. Subroutines use out-of-line code, and there is only one
copy of this code for a particular program. Thus, macros are used only when the code to
be inserted is short or highly parameterised. It would not be convenient, for instance, to
use subroutines to perform the functions of any of the macros used as examples in previous
Sections.

2.4.6 Impossible replacements

It is worth noting some of the types of replacement that it is not possible to perform by
means of macros. Below are two examples of illegal syntax of macro calls, together with
possible correct forms.
a. Wrong: {arg A} = {arg B};
since each macro call must start with a macro name.
Right: SET {arg A} = {arg B};
Here SET is used as the macro name.
b. Wrong: $ {character?}
It is not possible to define an argument as the character (or atom) immediately following
a given name. Every argument must be followed by some predefined delimiter.
Right: $ {argument};
Here a semicolon is used as the closing delimiter.

Chapter 2: The environment and its constituents 9

2.5 Introduction to macro-time variables and statements

The form of the value of a call of such macros as the IF and SUM macros used earlier as
examples would have to depend on the particular patterns of delimiters that were used in
the call. For instance:

SUM ALPHA+BETA;
must generate an entirely different set of instructions from:
SUM ALPHA-BETA-GAMMA+X+Y-Z;

and, in the case of IF, the value text must depend upon whether ELSE was present. Macros
such as these, therefore, are more complicated than the ESUB case, where a fixed skeleton
of code consisting of three machine instructions is substituted for each call. The only
variable element in the ESUB case is the form of its argument. In the more complicated
cases, where the delimiters provide a second variable element, the user has to write a little
program which is executed by ML/T and tests the form of the delimiters used and generates
code accordingly. In the case of SUM, which has an indefinitely long list of arguments and
delimiters, this program would involve a simple repetitive loop to iterate through the list.
Hence, ML/I contains an elementary programming language of its own. This language
contains an assignment statement, a conditional ‘goto’ statement, labels, and integer and
character string variables. All of these are called macro-time entities to distinguish them
from the corresponding execution-time entities, and the reader must be careful not to
confuse the two. The difference is illustrated thus: the DO macro described earlier (see
Section 2.4.1 [Examples of macros|, page 6) would generate a loop which was performed at
execution time and controlled by an execution-time variable; on the other hand the value
text for the SUM macro would be generated by a macro-time loop controlled by a macro-time
variable.

Macro variables and macro labels are considered in the next Section. Macro-time
statements are considered in detail in Chapter 4 [Operation macros and their use|, page 26.

2.6 Inserts

This Section describes how quantities can be inserted into text. In particular, it describes
how arguments of macro calls are inserted into replacement text. However, first it is nec-
essary to consider some of the quantities, in addition to arguments, that may be inserted
into text.

2.6.1 Macro-time variables

Macro variables are integer or character variables available to the user at macro-time. ML/I
contains facilities for performing arithmetic on these variables (where appropriate), testing
their values, and inserting their values into the text. They are useful as switches and for
counting (e.g. in processing macros with a variable number of arguments), as well as for
storing information which may be needed later on in a process.

There are four kinds of macro variable, namely:
a. permanent variables, referred to as P1, P2, ...
b. system variables, referred to as S1, 82, ...

c. temporary variables, referred to as T1, T2, ...

Chapter 2: The environment and its constituents 10

d. character variables, referred to as C1, C2, ...

Permanent, temporary and system variables are used to store integers. Character variables
are used to store character strings.

Permanent, system and character variables have global scope; this means they can
be referred to anywhere. An implementation-defined number of each is allocated at the
start of each process, and these remain in existence throughout. The user may allocate
extra permanent variables and character variables (but not system variables) if desired, see
Section 5.4.4 [MCPVAR], page 60, and Section 5.4.5 [MCCVAR|, page 61. The difference between
permanent /character and system variables is that the former have no fixed meanings and are
free for users to use as they wish, but the latter have fixed implementation-defined meanings
associated with controlling the operation of ML/I. For example, in a given implementation,
system variable S20 might control the listing of the source text; if it was zero no listing would
be produced and if it was one there would be a listing. Sections 5 and 7 of each Appendix
describe the meanings of system variables (if any) and state the number of permanent and
system variables that are initially allocated. System variables 1 to 9 are normally the same
in most implementations, and are described in Chapter 8 [Use of system variables|, page 82.

Temporary variables, on the other hand, have a more local scope. During the evaluation
of the source text there are no temporary variables in existence. However, each time a macro
call is made a number of temporary variables is allocated, and these remain in existence while
the replacement text of the macro is being evaluated. The number of temporary variables
allocated at the call of a macro is given by the capacity of the macro (see Section 2.4.4
[Macro definitions], page 8). The capacity is usually three. If temporary variable N is
referenced during the evaluation of the replacement text of a macro call, this is taken to
mean the Nth temporary variable associated with the call. Since, as will be seen later, it is
possible to have macro calls within macro calls, it is possible to have several allocations of
temporary variables in existence at the same time.

2.6.2 Initialisation of macro variables

The initial number and values of permanent variables are defined in Section 5 of each
Appendix.

The initial number and values of system variables are defined in Section 7 of each
Appendix.

The initial number of character variables is always zero; it is necessary to allocate a
suitable quantity before use (see Section 5.4.5 [MCCVAR|, page 61).

The first three temporary variables of each allocation are initialised as follows (all other
temporary variables have undefined initial values):

T1 the number of arguments of the current macro call.

T2 the number of macro calls so far performed by ML/I during the current process.
The importance of this number is that it is unique to the current call.

T3 the current depth of nesting of macro calls (i.e. the number of calls, includ-
ing the present one, currently being processed; calls of operation macros (see
Section 4.1 [Operation macros|, page 26) are not counted here, though they do
count toward the setting of T2).

Chapter 2: The environment and its constituents 11

It is to be emphasised that these are initial values, and the user is free to change them if
desired (in this way, temporary variables are unlike system variables. If the values of system
variables—even those without assigned meanings—were changed arbitrarily it might have
unwanted effects).

2.6.3 Subscripts and macro expressions

In the previous Sections, macro variables were specified by a letter followed by a number
(e.g. P2), but there are other possibilities. The general form of a macro variable is:

(P)
(8) {subscript}
(T
©

where a subscript is an unsigned positive integer, or an integer macro variable (but not a
character variable). The value of the subscript specifies the macro variable to be referenced.
Thus, if T3 has value 4, then PT3 would specify P4. As a more complicated example, if T1
had value 2 and P2 had value 6, then TPT1 would specify the sixth temporary variable. If
character variable 3 contained the string 16, it would be wrong to write PC3 in order to
reference permanent variable 16; however, it would be possible to obtain the same effect by
using an insert, in which case the user would write P%C3. instead.

Macro variables can be combined into macro expressions, which are used when it is
desired to perform arithmetic calculations during macro generation. Examples of macro
expressions are:

1, -6, 3-S1, -TT1-145/P2+P3+6

Multiplication is represented by an asterisk, and division by a slash. Bitwise logical opera-
tions are also supported; ampersand (&) is used for logical “and”, and vertical bar (|) for
logical “or”. The general form of a macro expression is:

{primary} [(+) {primary} *7]
(-
(%)
)
(&)
QD)

where a primary has the form:
[(+) *?] {operand?}

and an operand is an unsigned integer or an integer macro variable. Redundant spaces can
occur anywhere in macro expressions except within operands.

The result of a macro expression is the integer derived from calculating the expression
by the ordinary rules of arithmetic. Unary operators are performed first, followed by the
binary operators from left to right, with the proviso that multiplication and division take
precedence over addition and subtraction. Division is truncated to the greatest integer that
does not exceed the exact result. Division by zero is detected as an error. Examples of the
results of macro expressions are:

1+2x%3 has result 7
3%7/8 has result 2

Chapter 2: The environment and its constituents 12

7/8 % 3 has result 0
-5/4 has result —2
5/-4 also has result —2
-4/-3 % -6 has result —6

2.6.4 Character variables

Strictly speaking, character variables should be called character string variables, or just
string variables, but since their names begin with the flag character C, rather than S (which
is already taken for system variables), we shall persist with the original term.

Character variables can store character strings of any length, up to a maximum known
as the range. For a given ML/I process, all character variables have the same range, chosen
by the user when initially allocating the first character variable. When the value of a
character variable is inserted, the length of the inserted text will be the length of the string
last stored in the variable, rather than the range (i.e. no trailing spaces are included unless
originally stored as such).

Character variables are particularly useful as an efficient solution to the problem of
‘remembering’ pieces of text which are to be recalled at some later point in the ML/I
process. An alternative solution would be to use the MCFOR macro described in Section 7.4.1
[Macro-time loop|, page 73.

2.6.5 Integer overflow

Each implementation has a maximum absolute value which must not be exceeded by any
integer derived during the calculation of a macro expression or subscript. The effect of
exceeding this value is implementation-defined. See Section 5 of the relevant Appendix for
details.

2.6.6 Macro labels

Since there is a facility for a macro-time ‘goto’, there is also a facility for placing macro-time
labels. These are called macro labels. Each macro label is designated by a unique positive
integer.

2.6.7 Macro elements

Macro variables, macro labels, arguments and delimiters are collectively called macro ele-
ments. It is convenient to regard macro elements as part of the environment. The full details
of how macro elements are added to the environment are explained later; see Section 4.4
[Dynamic aspects of the environment|, page 28. In essence, the rule is that every time a
macro is called its arguments and delimiters, plus a set of temporary variables, are auto-
matically added to the environment, and this supplemented environment is used to evaluate
the replacement text of the call. Similarly, when a macro label is encountered, its position
is ‘remembered’ by adding it to the environment.

2.6.8 Insert definitions

It is now possible to define the constituent of the environment, called an insert definition,
which is used for such purposes as to tell ML/I to insert a particular argument of a macro
at some point in its replacement text. An insert definition consists of:

Chapter 2: The environment and its constituents 13

a. A delimiter structure. Since all inserts have fixed delimiters and exactly one argument,
this delimiter structure will be a simple one. It will consist of a name with a single
successor, this successor being a closing delimiter.

b. An on/off option. If this option is on, an insert is called protected; otherwise it is called
unprotected. The use of this option, which need not be of much concern to the average
reader, is described later; see Section 4.5 [Protected and unprotected inserts], page 29.

At each point where the user wishes something to be inserted, they should write the
following construction, called an insert:

{insert name} {argument} {delimiter}

In the rest of this manual, for the purpose of examples, it will be assumed that the atom
% is an insert name, with the atom . as its closing delimiter. With this assumption, the
following are examples of inserts (the exact meaning of these will become apparent later):

%A6. YP1. YLT2. YWA P9-16%T3.

On encountering an insert, ML/I evaluates the argument of the insert (in case it con-
tains macro calls, etc.) and the resulting value text acts as a specification of what to insert.
The value text must consist of a flag followed by a macro expression. In the first above
example, the flag is A and the macro expression is 6. The flag may be null, or it may be
any of the following: A, B, D, L, WA, WB or WD. Any number of redundant spaces is allowed
before, after or within a flag.

The meaning of the various flags is explained below. In each explanation, ‘N’ is used
to represent the value of the macro expression following the flag. More examples are given
in the next Section. An attempt to insert something which does not exist (e.g. the third
argument of a macro with only two arguments) results in an error. The meanings of the
flags are:

a. A. This flag is used within the replacement text of a macro to evaluate and insert
the Nth argument of a call of the macro. Any spaces at the beginning or end of the
argument are deleted before it is evaluated. In the case of this flag, and in cases b) and
c) below, the piece of text that is evaluated and inserted is called the inserted text.

b. B. As case a), except that spaces are not deleted.

c. D. As case b), except that the Nth delimiter, rather than the Nth argument, is inserted.
The name of a macro is considered as delimiter zero, and the Nth delimiter is thus the
delimiter following the Nth argument.

d. WA, WB, WD. As cases a), b) and c) respectively, except that the inserted text is not
evaluated but is inserted literally, exactly as written (W stands for ‘written’). The
difference between this and the previous cases arises if the inserted text itself involves
macro calls, inserts, etc. In the previous cases these are evaluated; in this case they
are not.

e. Null. The numerical value of N, represented as a character string, is inserted. This
character string contains no redundant leading zeros. It is preceded by a minus sign if
N is negative; otherwise no sign is present.

f. L. This is used to place a macro label, and is rather different from the above cases in
that nothing is inserted (i.e. the value of the insert is null). The label N is, if acceptable,
added to the current environment and may be the subject of a macro-time ‘goto’. A
macro label is acceptable if it is inserted within a piece of replacement text or inserted

Chapter 2: The environment and its constituents 14

text and has not already been defined within that text. It is legal to insert a label in
the source text, but since, as will be seen later, it is not possible to have a backward
‘goto’ within the source text, such labels are not added to the environment (i.e. they
are ‘forgotten’). Macro labels are local to the piece of text in which they occur, and
there is no harm in using the same label numbers within different pieces of text. Label
numbers can be chosen arbitrarily, except that they must be positive.

2.6.9 Examples of inserts

The following examples illustrate the use of inserts:

e The replacement text of the ESUB macro (see Section 2.4 [Macros and delimiter struc-
tures|, page 5) might be written:

CMA

ADD %A1 .

CMA {NL}
Oor even:

CMA

ADD %A1 .

CMA %D1.

The latter form would have the advantage of inserting newline or tab, according to
which one was written in the call.

e In the case of the DO macro (see Section 2.4.1 [Examples of macros], page 6), the
replacement text would involve an execution-time label. It is imperative that a different
execution-time label be generated for each call of DO. This could be achieved by using
the initial value of T2. The label could, for example, be written:

ZZ%T2.

In this case, if two successive calls of DO occurred at the start of the source text, then
ZZ1 would be generated at the first call and ZZ2 at the second.

e [f SWITCH is a macro name with replacement text P1, then it is possible to write:
%SWITCH.

to insert the first permanent variable. The reason is that the argument of an insert is
evaluated before being processed, and the call of the SWITCH macro would be performed
during this evaluation.

e The occurrence of %A1. in the replacement text of the macro call:
MOVE FROM JACK TO JOHN;

would cause JACK to be inserted, whereas the occurrence of %B1. would cause JACK
enclosed in spaces to be inserted.

e If it is desired to insert the name of a macro into its replacement text, this can be done
by writing %WDO. (the reason for this facility is that macros can have several alternative
names). In general it would be wrong to use %DO. instead, since this form causes any
macro calls within the delimiter to be performed. But delimiter zero is the macro name
itself, and hence an endless recursive loop is likely. In fact, when inserting delimiters
it is usually better to use a W.

e This example rather jumps the gun in that it uses the macro-time statements MCSET
and MCGO which have not yet been defined. However, if the reader cares to try to

Chapter 2: The environment and its constituents 15

understand this example at this stage, it may give a useful insight into the purpose
of the preceding material. The example shows how the replacement text of the SUM
macro could be written—the comments at the side are for the reader’s benefit and do
not form part of the replacement text. The blank lines are not part of the replacement
text, either.

LAC %A1. Generate code to load accumulator
with first argument.

MCSET T2 = 1 Use T2 as loop counter.

%L4.MCGO L1 IF %DT2. = + Test if current delimiter is plus . . .

MCGO L2 IF %DT2. = - ... or minus.

MCGO LO If neither then exit (LO has a
special meaning, namely ‘return’).

%L2. ESUB %AT2+1. Generate code to subtract the
current argument.

MCGO L3

%L1. ADD %AT2+1. Generate code to add current argument.

#L3.MCSET T2 =T2 + 1 Increase T2 and continue loop.

MCGO L4

2.7 Skips

The description so far has implied that every occurrence of a macro name in the scanned
text is taken as the start of a macro call. This would mean that the user had no easy means
of getting macro names or, for that matter, insert names into the value text. Moreover, if
he or she were unfortunate enough to use a macro name within any comments, then ML/I
would take this as a macro call and would start searching for delimiters. To get round these
difficulties the user places skip definitions in the environment, and by this means can cause
ML/T to ignore comments and to take certain strings as literals.

A skip definition consists of:
a. A delimiter structure. The names of this structure are called skip names.

b. Three on/off options. These options are: the text option, the delimiter option and the
matched option.

The action of ML/I on finding a skip name is similar to the action on finding a macro
name. In both cases a search for delimiters is made until a closing delimiter is found. The
text from the skip name to its closing delimiter is called a skip. A skip, therefore, has form:

{skip name} [{argument} {secondary delimiter} *7]

In most practical applications of skips, there will be exactly one argument. The arguments
of skips are treated as literals, exactly as if all macro definitions, insert definitions and
warning markers (see later) had been temporarily removed from the environment during
the scanning of the skip. There is no replacement text associated with a skip; instead the
value of a skip is defined simply by the setting of two of its options. These options, which
are independent of one another, have the following effect:

e If the delimiter option is on, then the delimiters of the skip are copied over to the value
text; otherwise they are not.

Chapter 2: The environment and its constituents 16

e If the text option is on, then the arguments of the skip are copied over to the value
text; otherwise they are not.

As an example of the use of a skip, assume the source text contains comments that begin
with the word COMMENT and end with a semicolon. In order to skip these comments, the
user would define COMMENT as a skip name with semicolon as its closing delimiter. In this
case, if the following comment occurred:

COMMENT THIS DO LOOP ZEROISES ARRAY X;

then its value (i.e. the piece of text copied over to the value text) would be one of the
following;:

a. If both options were on, its value would be:
COMMENT THIS DO LOOP ZEROISES ARRAY X;
b. If neither option was on, its value would be null.
c. If only the delimiter option was on, its value would be:
COMMENT
d. If only the text option was on, its value would be:

THIS DO LOOP ZEROISES ARRAY X

If COMMENT was not defined as a skip at all, then comments would normally be copied over
to the value text as in case a). However, if in the above example DO was a macro name, then
ML /T would try to find the delimiters of DO and replace the call of DO by its replacement text.
This is clearly undesirable. The chances are that the entire source text would be scanned
without finding the required delimiters. Hence the use of skips to inhibit the recognition of
macro names within certain contexts.

It will be assumed in the rest of this manual that COMMENT is a skip name, with a
semicolon as its closing delimiter.

2.7.1 Matched skips and straight skips

Assume the user has written the comment:
COMMENT THIS COMMENT MARKS THE HALF-WAY STAGE;

In this case, the skip name COMMENT appears within an argument of the skip COMMENT.
However, it is clearly undesirable that ML/I should treat the second COMMENT as a nested
skip and try to match it with a semicolon. To prevent this happening, COMMENT would be
defined as a skip with the matched option off. This is called a straight skip.

However, there are applications of skips where it is desirable for nested skips to be
recognised, and such skips have the matched option on. They are called matched skips.
Literal brackets, which are described in Section 2.7.2 [Literal brackets|, page 17, are an
example of the application of a matched skip. If ML/I encounters any skip name during the
scanning of a matched skip, it matches the nested skip with its delimiters before matching
the containing skip with its delimiters. The scanning process is described in more detail in
Section 3.4 [The method of searching for delimiters], page 22. In a nest of skips, the value
is entirely controlled by the options associated with the outermost skip.

Chapter 2: The environment and its constituents 17

2.7.2 Literal brackets

It is usual to have in each environment a skip definition consisting of a name and a closing
delimiter with the options set in such a way that at every occurrence of the skip the argument
is copied and the delimiters deleted. Such skips are called literal brackets. It will be assumed
in the rest of this manual that the name < with closing delimiter > have been defined as a
pair of literal brackets. If it was required to copy a piece of text literally over to the value
text, ignoring all macro calls and inserts, then the text would be written:

< {text} >

The process of evaluation would consist simply of removing the literal brackets. Literal
brackets always have the matched option on. The reason for this will become apparent in
Section 4.2 [Use of literal brackets for surrounding operation macro arguments], page 26.

2.7.3 Example of a matched skip

The following example, which is rather more complicated than any situation likely to arise
in practice, illustrates the full implications of the rules for the matching of skips.

In the text:
< AAA < BBB COMMENT < ; CCC > DDD >

the initial < is matched with the last >. (The occurrence of < after COMMENT is not recognised
as a skip name, since COMMENT is a straight skip). The value of this text is:

AAA < BBB COMMENT < ; CCC > DDD
This value is independent of how the delimiter and text options for COMMENT are set.

2.7.4 Warning markers

Up to now, ML/I has been described as if every occurrence of a macro name not within a
skip is taken as the start of a macro call. In fact, this is only true if the environment is in
free mode.

If desired, the user may place the environment in warning mode by defining one or
more warning markers. Any atom or series of atoms may be defined as a warning marker.
In warning mode, each macro call must commence with a warning marker. Optional spaces
are allowed between the warning marker and the macro name which follows it; this means
that in warning mode it is not possible to have a macro name that begins with a space.
Thus, if CALL were a warning marker, the ESUB macro would be called by writing:

CALL ESUB X {NL}

In warning mode, each occurrence of a warning marker must be followed by a macro name;
failure to do so will result in an error message. The message can be suppressed by setting
system variable 83 (see Section 8.2 [Use of 81 to S9], page 82) to one. This is useful if macro
calls in the source text are only to be recognised in certain positions, e.g. following a tab or
at the start of a line. In such examples the characters ‘tab’ or ‘startline’ could be defined
as warning markers, and, assuming that not all occurrences need to be followed by macro
calls, 83 could be set to one to suppress the message.

Note that, if a warning marker is not followed by a macro name, it is treated as if it
were not a construction name at all and is thus normally copied over to the value text. This
applies irrespective of whether S3 is being used to suppress the error message.

Chapter 2: The environment and its constituents 18

The essential difference between warning mode and free mode is that in the first case all
macro calls have to be specially marked by preceding them with warning markers, whereas
in the second case all macro names that are not to be taken as macro calls have to be
specially marked by enclosing them in skips.

Note that warning markers only apply to macro calls, and must not be used to precede
inserts or skips. These latter are always recognised, irrespective of the mode of the scan.

2.7.5 Stop markers

Normally, if a delimiter of a macro call in the source text is accidentally omitted or wrongly
specified, then the remainder of the source text might be scanned over in searching for the
missing delimiter.

Thus, there is a construction called a stop marker. Stop markers are only recognised
when searching for a delimiter of a construction in the source text. Outside of this context,
stop markers are not part of the environment. If it encounters a stop marker, ML/I gives
a message to signal that the current construction(s) are unmatched. The text from the
construction name up to (but not including) the stop marker is ignored, and scanning is
resumed at the stop marker itself. For example, if the source text read:

MCDEF IF THEN NL
AS <. . >

and newline were then declared as a stop marker, and further source text included:
IF X = Y THIN GO TO Z

then ML /I would take the final newline as a stop marker and would give the error message:
Delimiter THEN of macro IF in line . . . not found

Stop markers obey the normal rules for name clashes, See Section 4.6 [Ambiguous use of
names|, page 29. Hence if, in the above example, THIN were replaced by THEN, then the
final newline would be treated as a delimiter of IF rather than as a stop marker, and there
would be no error message. An implication of this is that if the following definition were
added to the above text:

MCSKIP DT, COMMENT N1 OPT NL N1 OR ; ALL
then

COMMENT XXX
YYY
Z277;

would not cause an error since all newlines would be treated as delimiters, not stop markers.
In general, therefore, it is possible (though tortuous in all but the simplest cases) to define
constructions that may be arbitrarily long even if stop markers have been defined.

Note that stop markers override the normal scope rules in that they are recognised
within skips and within straight-scan macros. They are treated as local constructions.

Stop markers will stop forward searches for labels in the source text, as well as the scan
for unmatched constructions.

Chapter 2: The environment and its constituents 19

2.8 Summary of the environment

All the constituents of the environment have now been defined. To recap, these are:
a. Macro definitions.

Insert definitions.

Skip definitions.

Warning marker definitions.

Stop marker definitions.

Permanent variables.

Character variables.

PR o 20 T

System variables.

—

Temporary variables.
Arguments.
k. Delimiters.

1. Macro labels.

—i.

The term construction is used as a collective name for skips, inserts and macro names,
and the term name environment is used as a collective name for constituents a), b), ¢), d)
and e) above, since the names of these constituents are used to recognise constructions in
the scanned text.

2.9 Normal-scan macros and straight-scan macros *

This Section explains the difference between normal-scan macros and straight-scan macros.
However, straight-scan macros have only limited uses and the reader may choose to skip
this Section and assume that all macros are normal-scan.

The difference between the two types of macro arises in the scanning of macro calls.
In the case of a normal-scan macro, constructions nested within the call are recognised; in
the case of a straight-scan macro, the effect is as if the name environment were temporarily
removed during the scanning of the call. As an example of the use of a straight-scan
macro, consider a language where comments are commenced with the word NOTE and ended
with a semicolon. Assume it is desired to use ML/I to map this language into a language
where comments are enclosed between the atoms [and]. It is not possible to achieve this
transformation by the use of skips, since the options on skips do not permit the insertion
of extra characters; moreover normal-scan macros are inadequate since it is not desired to
recognise macro names within comments. Hence NOTE would be defined as a straight-scan
macro. Its replacement text would be:

[%WA1.]

The replacement text of a straight-scan macro is evaluated in exactly the same way as that
of a normal-scan macro.

The reader will no doubt have noticed that there is an analogy between the two types
of macro and the two types of skip. In fact, any straight skip can be represented as a
straight-scan macro. However, straight skips are preferable, where possible, since they are
slightly easier to define and much faster in execution. The analogy between normal-scan
macros and matched skips is not so close. Normal-scan macros permit any constructions to

Chapter 2: The environment and its constituents 20

be nested within calls of them, whereas matched skips only allow further skips to be nested
within them.

The straight-scan option can only apply to user-defined macros; it cannot apply to
inserts or to operation macros (see Section 4.1 [Operation macros|, page 26).

2.10 Name environment used for examples
To avoid unnecessary repetition, a fixed name environment will be assumed in all subsequent
examples. This environment consists of:

e The atom % with closing delimiter . as an insert definition.

e The atoms < and > as literal brackets.

e COMMENT as a straight skip with closing delimiter semicolon.

e The DO and MOVE macros of Section 2.4.1 [Examples of macros]|, page 6.

e The ESUB macro of Section 2.4 [Macros and delimiter structures], page 5.

e No warning markers.

e No stop markers.

All the macros above are taken to be normal-scan.

Chapter 3: Text scanning and evaluation 21

3 Text scanning and evaluation

3.1 Nesting and recursion

Constructions may be nested to any desired depth, and may appear within replacement
text. Furthermore, recursive macro calls are allowed. In other words, any construction is
allowed with any piece of replacement text or inserted text, and a macro may be called while
evaluating its own replacement text. However, constructions must be properly nested. This
means that each construction must lie entirely within a single piece of replacement text,
entirely within a single piece of inserted text or entirely within the source text. Apart from
this obvious restriction, ML/I contains no restrictions on nesting and recursion.

As a result of nesting and recursion, the process of text evaluation is normally a re-
cursive one. At the beginning of a process, ML/I starts evaluating the source text. During
this evaluation, it will in general encounter a macro call. This will cause it temporarily
to suspend the evaluation of the source text and start evaluating the replacement text of
the call. While evaluating this replacement text, ML/I may encounter an insert, and this
will cause it to suspend the evaluation of the replacement text and start evaluating some
inserted text. Alternatively, it may encounter a nested macro call. Thus at any one time
several pieces of text may be in the process of evaluation.

This situation is liable to lead to ambiguities in terminology, so it is necessary to
clarify some of the terms that will be used. The terms scanned text, current environment
and current point of scan will always refer to the text actually being evaluated, not to
any piece of text whose evaluation has been temporarily suspended. ML/T is said to be
evaluating inserted text if the scanned text is inserted text, and a similar definition applies
to evaluating replacement text. ML/I is said to be evaluating the source text if it is not
within the evaluation of any macro calls or inserts.

3.2 Call by name

Arguments and delimiters are evaluated each time they are inserted, rather than when the
call in which they occur is scanned. In other words, they are ‘called by name’ rather than
‘called by value’. In most cases, of course, this choice of approach makes no difference to
the final result, but it does have an effect if the environment changes between the time an
argument is scanned and the time it is inserted.

3.3 Details of the scanning process

When text is evaluated, it is scanned atom by atom until the end is reached. All text,
whether the source text, replacement text or inserted text, is scanned and evaluated in the
same way. In general, each atom of the scanned text is compared with all the names in the
environment to see if a match can be found. However, as was seen in the previous Chapter,
some types of name are not recognised under certain circumstances. The complete list of
such circumstances is as follows:

a. No names are recognised within a straight skip or a straight-scan macro call.

b. Apart from skip names, no names are recognised within a matched skip.

Chapter 3: Text scanning and evaluation 22

¢. In warning mode, macro names are not recognised except after warning markers. Im-
mediately after a warning marker, no names except macro names and no secondary
delimiters are recognised unless an error occurs (see Section 6.4.4 [Illegal macro name],
page 64).

When a construction name is found, a search is made for its closing delimiter. This process
is described in Section 3.4 [The method of searching for delimiters], page 22.

Some names in the environment may consist of more than one atom. In this case, when
an atom of the scanned text is found to match the first atom of the name, the scanning
process looks ahead to see if the remaining atoms of the name follow this atom (this look-
ahead is abandoned if the end of the current text is reached). If a match is found, scanning
is resumed beyond the last atom of the name. The user can specify, for each pair of atoms
of a multi-atom name, whether spaces between the atoms are to be ignored by the scan.
Multi-atom secondary delimiters are matched in exactly the same way as multi-atom names.

Apart from these cases of multi-atom delimiters, the scan always proceeds atom by
atom. Each atom not within a construction is copied over to the value text. Atoms within
skips may or may not be copied according to the option settings. Atoms within macro
calls or inserts are never copied over to the value text since the very purpose of these
constructions is to perform a replacement.

3.4 The method of searching for delimiters

When ML/I encounters a construction name, it searches for each of the secondary delimiters
until the closing delimiter is found (except in the case where the construction name is its
own closing delimiter, when no searching is required). In general, an error message (see
Section 6.4.5 [Unmatched construction], page 64) is given if the end of the current piece of
text is reached before the closing delimiter has been found. In this case the construction is
said to be unmatched. Fxclusive delimiters, however, provide a slight exception to this rule
(see Section 3.5 [Exclusive delimiters], page 23). If, during the search for the delimiters of
a construction, a nested construction is encountered, then the search for the delimiters of
the outer construction is suspended until the closing delimiter of the nested construction
has been found. Nested constructions can only arise within inserts, matched skips and
normal-scan macros. Since arguments are called by name rather than by value, nested
constructions are not evaluated when scanned over during the search for delimiters of a
containing construction. Evaluation occurs only when the argument containing the nested
construction is inserted.

The process of searching for closing delimiters is illustrated by the following rather
pathological example (remember that the name environment of Section 2.10 [Name envi-
ronment used for examples], page 20, applies to this and all subsequent examples).

DO 3 TIMES < REPEAT DO >
ESUB REPEAT
DO REPEAT TIMES
REPEAT

REPEAT

In this example the first DO is matched with the last REPEAT, since the search for the REPEAT
for this first DO is suspended during the scanning of the nested constructions <, ESUB and

Chapter 3: Text scanning and evaluation 23

DO. Furthermore, the occurrence of DO within the literal brackets is not recognised as a
macro name.

In general, a single closing delimiter cannot terminate two separate constructions.
Thus, two successive REPEATS are needed in the above example to close both the DO macros.
However, exclusive delimiters again provide an exception to the rule.

As a further example, if the user were foolish enough to write:
MOVE FROM TO TO PIG;

then the first TO would be taken as the delimiter of MOVE FROM. What should be written to
make the second TO the delimiter is:

MOVE FROM <TO> TO PIG;
However, there is nothing wrong with writing;:
MOVE FROM PIG TO TO;

In practice, if delimiter names are chosen sensibly, problems such as the above rarely arise.

3.5 Exclusive delimiters *

It is highly recommended that this Section be skipped on a first reading, as it describes a
rather complicated feature which is only occasionally needed.

In the normal way, after a construction has been scanned over and replaced by its value,
scanning is resumed with the atom following the closing delimiter of the construction. Hence
the closing delimiter is taken as part of the construction. In a few cases, however, it is more
convenient to regard the closing delimiter as external to the construction. Such a delimiter
is called an exclusive delimiter. Only macros and skips may have exclusive delimiters, and
exclusive delimiters are always closing delimiters. After a construction with an exclusive
delimiter has been dealt with, scanning is resumed at the exclusive delimiter rather than
beyond it.

Exclusive delimiters are useful when it is desired to use a single delimiter as a closing
delimiter of several nested constructions. For example, an IF macro might have form:

IF {condition} THEN {nested macro call} {NL}

where the nested macro call is terminated, like IF, by the closing newline. In this case, it
would be necessary to define newline as an exclusive delimiter of any macro that could be
nested within the IF macro. Then, when the scan had used the newline to close the nested
macro call, it would re-scan it and use it again to close the IF macro.

A difficulty arises in the above example when, within the replacement text of IF, the
second argument is inserted. The problem is that the nested macro call is unmatched within
this argument, since its closing delimiter, the newline, lies beyond the end of the argument.
ML /T resolves this problem by using the following rule; if, when inserting the Nth argument
of a macro call, a construction is unmatched then the Nth delimiter is examined and if this
delimiter (or a series of atoms at the start of it) is an exclusive delimiter which closes the
apparently unmatched construction then this construction is considered as matched and
processing proceeds normally. If there is a nest of unmatched constructions then this rule
is successively applied to all the constructions in turn (in fact, this rule is such a natural
one that the user might not realise that there is any logical problem at all).

Chapter 3: Text scanning and evaluation 24

Note that it is quite legal to insert an exclusive delimiter in the replacement text of
the macro to which it belongs. It is even legal to define a name delimiter as an exclusive
delimiter (though this is almost certain to lead to an endless loop). Furthermore it is quite
legal to have both exclusive delimiters and ordinary closing delimiters within the same
delimiter structure.

If a skip ends with an exclusive delimiter, this closing delimiter is not taken as part of
the skip and hence it is not affected by the delimiter option associated with the skip.

Exclusive delimiters are sometimes useful in simple applications where no nesting is
involved. For instance it is often desirable for a skip to delete up to, but not including, the
next newline.

As a more complicated example, consider a language in which macro calls were one to a
line with the macro name coming first. In this case it might be convenient to give newline a
double use: firstly, as an exclusive delimiter of the macro on the previous line and secondly
as a warning marker to precede the macro name on the next line. This is, however, a little
tricky; it is usually easier to use the startline facility (see Section 3.6 [Startlines], page 24).

The way exclusive delimiters are defined is described at the end of Section 5.1.3 [Intro-
duction to more complicated cases|, page 35.

3.6 Startlines *

It is often useful, when processing text where a line is a logical entity (e.g. as in most
assembly languages and some high-level languages), to define newline as a macro name.
This causes subsidiary problems because

a. The first and last line of the text need to be treated specially.

b. As well as being a macro name, newline may also be a closing delimiter.

To remedy this, ML/I contains an option whereby an invisible layout character called start-
line may be inserted at the start of each line of input text. The option is controlled by the
system variable S1: if S1 is one, startline characters are inserted; if S1 is not one, they are
not. Initially S1 is zero. ML/I treats startline like any other layout character. Its layout
keyword is SL.

Startlines are ignored in the output text from ML/I. However, they are not ignored in
value text, and users are recommended to set S1 after their macros have been read in. One
reason for this is illustrated by the following example:

MCDEF TEST OPT ; OR NL ALL
AS <MCGO L1 IF %WD1.=<
>

If S1 was one while this macro was being read in, then a startline would appear before the >
character. In this case the test after the IF, which should test if delimiter one is a newline,
would in fact test if delimiter one was a newline followed by a startline. The test would
therefore always fail. If, as is very often the case, startline on its own is a construction
name, the above recommendation is virtually imperative.

Ezample

Chapter 3: Text scanning and evaluation 25

The following macros would list all labelled statements in an assembly lan-
guage program. It is assumed the assembler is such that statements are one
to a line, and a line is taken to be labelled if the first character is not a space.

MCSKIP SL WITH SPACE NL
MCDEF SL NL

AS<%WAL.

>

MCSET S1 =1

3.7 Dynamically generated constructions *

The method of scanning, with the requirement that calls be properly nested, means that
all the delimiters of a construction must be in the same piece of text. This rule, which
is very desirable since it leads to the early detection of genuine errors, should be borne
in mind by the user who wishes to generate constructions dynamically, for example to
combine at macro-time separate pieces of text to build up a macro call. The rule prohibits
a construction like:

CHOOSENAME A TO B;
where CHOOSENAME is a macro with replacement text MOVE FROM, since the call of MOVE FROM

is not properly nested within the call of CHOOSENAME. It is similarly not correct to use the
construction:

DO A %A1. B REPEAT
where %A1. has value TIMES. It is however quite easy to achieve the object of these examples,

namely to generate a delimiter dynamically, and the reader who is interested in doing this
should refer to the example in Section 7.4.3 [Dynamically constructed calls], page 75.

Chapter 4: Operation macros and their use 26

4 Operation macros and their use

4.1 Operation macros

The macros considered so far have been strictly concerned with making replacements of
pieces of text. In fact, strictly speaking, they should have been called substitution macros.
There is a second type of macro called an operation macro. A call of an operation macro
causes a predefined system action to take place, for example the setting up of a new con-
struction. Operation macros are an integral part of ML/I and are not, like substitution
macros, defined by the user. They are, however, part of the name environment and are
called in the same way as substitution macros. Examples of operation macros are MCSET
(which performs macro-time arithmetic), MCDEF (which defines a macro) and MCGQO (which
is a macro-time conditional ‘goto’ statement). Examples of their calls are:

MCSET P1 = P2+1

MCDEF LNG AS Length

MCGO L6 IF %Al. = ACC

Complete descriptions of all the operation macros may be found in Chapter 5 [Operation
macros—specifications|, page 32. The names of all operation macros begin with MC to
minimise confusion with substitution macros (users are not forbidden to start their own
macro names with MC, but it is probably less confusing not to do so). Note that the names
of all operation macros, like all other constructions built into ML/I, are written in capital
letters.

The arguments of all operation macros are evaluated before being processed. Thus, if
tempno were a macro with replacement text P1, then the following would be equivalent to
the previous example of MCSET:

MCSET tempno = P2+1

In most cases, a call of an operation macro does not cause any value text to be generated. No
value text would be generated, for instance, in any of the examples above. However, there
are two operation macros, MCSUB and MCLENG, which do cause value text to be generated.
These two macros are called system functions. MCSUB is used for generating substrings of
longer pieces of text, and MCLENG is used to calculate the length of a piece of text.

There are no general restrictions on the use of operation macros. They may be called
from within any type of text, even from within arguments to other operation macro calls.

4.2 Use of literal brackets for surrounding operation macro
arguments

The fact that arguments of operation macros are evaluated before being processed has
several advantages, but it also has its dangers, and in many cases the user will wish to
inhibit this argument evaluation. Consider as an example the last argument of MCDEF,
which specifies the replacement text of the macro being defined. A definition might be
written:

MCDEF . . . AS < . . . %AL. . . . >
If the above literal brackets (the characters < and >) had been omitted, ML/I would have

tried to insert the value of argument one at the time the macro was defined (called defi-
nition time) rather than when the macro was called, and an error would probably result.

Chapter 4: Operation macros and their use 27

Occasionally, however, a user might want to do this, in particular when one macro is defined
within another and the arguments of the outer one figure in the definition. Apart from cases
like this, it is a good plan to use literal brackets whenever specifying the replacement text
of a macro.

Another reason for the usage of literal brackets arises when the replacement text in-
volves one or more newlines, e.g.:

MCDEF . . . AS <LINE 1
LINE 2
>

In this case, since newline is also the closing delimiter of MCDEF, the newlines within the
replacement text need to be prevented from closing the MCDEF. The literal brackets, being
a construction nested within the call of MCDEF, achieve this.

It is now possible to see why literal brackets must be defined as matched skips rather
than straight skips. Consider the following example, where a piece of replacement text itself
contains a call of MCDEF:

MCDEF MAC1 AS < .
MCDEF MAC2 AS < .
. COMMENT > ;
>

It is vital that the first < be matched with the last >, and not with the occurrence of > in a
comment nor with its occurrence in the nested MCDEF. The definition of literal brackets as
a matched skip accomplishes this.

4.3 NEC macros

Many of the operation macros have the effect of adding to or deleting from the name
environment. These macros are called NEC (name environment changing) macros. The
name environment is set up dynamically by calls of NEC macros during text evaluation.
The initial state of the name environment is implementation-defined (see Section 2 of the
relevant Appendix) but it will usually contain just the operation macros. Changes in the
environment affect subsequent text evaluation, but have no effect on value text already
generated. Constructions may be defined as either global or local. Global constructions
apply to all subsequent text evaluation, whereas local constructions apply only to the text
in which they are defined, together with any macros called from within this text (for exact
details see Section 4.4 [Dynamic aspects of the environment|, page 28). A local definition
occurring in the source text usually has the same effect as a global definition, with the
proviso that only the former will be affected by the MCNO. .. operation macros defined in
Section 5.2.5 [MCNOWARN MCNOINS MCNOSKIP MCNODEF], page 46.

To start with, most users will probably not be very interested in defining new macros
in the middle of text evaluation, In this case, the entire name environment can be set
up by a series of NEC macro calls at the start of the source text, and all the rest of
the text can be evaluated using this name environment. Local definition should be used
in preference to global ones since the setting up of global definitions involves more work
for ML/I (normally, global definitions are only necessary when it is desired to use one
macro to set up the definition of another). Readers who are not interested in changing the
name environment dynamically can skip Section 4.4 [Dynamic aspects of the environment],

Chapter 4: Operation macros and their use 28

page 28, and Section 4.5 [Protected and unprotected inserts|, page 29. They can, in fact,
totally ignore global definitions, and they need not worry about the difference between
protected and unprotected inserts.

4.4 Dynamic aspects of the environment *

The value of a piece of text depends on the state of the environment when its evaluation is
started. The purpose of this Section is to define the initial state of the environment when
replacement text or inserted text is evaluated, and to explain the effect of dynamic changes
in the name environment.

It is convenient to divide the name environment into two parts:

e The global name environment, which contains the names of global constructions. Op-
eration macro names are treated as global.

e The local name environment, which contains the names of local constructions.

If a substitution macro is called, or if an argument or delimiter is inserted, this cannot
change the local name environment of the containing text. However, any change in the
global name environment applies to the subsequent evaluation of the containing text. In
other words, there is a single global name environment but each piece of text in the process
of evaluation has its own particular local name environment.

When a substitution macro is called, the replacement text is evaluated under the fol-
lowing initial environment:

e the global name environment in effect when the call is made.
e the local name environment in effect when the call is made.
e the permanent, character and system variables.

e the arguments and delimiters of the call.

e a set of temporary variables. These are allocated when the call is made. The number
allocated is given by the capacity of the macro being called.

e 10 macro labels.

When an operation macro is called, no special environment is set up and no temporary
variables are allocated. The arguments of the operation macro are evaluated under the
environment in force when the call was scanned. The same applies to the argument of an
insert.

Before considering the initial environment for the evaluation of inserted text, it is
instructive to consider an example that will illustrate the reasons behind the rules. This
example involves passing arguments down from one macro to another: Assume that within
the replacement text of a macro XYZ it is desired to call the MOVE FROM macro to move the
second argument of XYZ into a place called Temp. This call of MOVE FROM would be written:

MOVE FROM %A2. TO Temp;

This call would cause the replacement text of the MOVE FROM macro to be evaluated, and
during this evaluation it would be necessary to insert the first argument of MOVE FROM. In
order to do so, the insert %A2. must be performed. Now, in this case ML/I takes A2 to
mean the second argument of XYZ, not the second argument of MOVE FROM. The initial state
of the environment for the evaluation of inserted text is set to make this so. This initial
environment consists of:

Chapter 4: Operation macros and their use 29

a. the current global name environment.

b. a local name environment. This depends on whether the insert is protected or unpro-
tected. See Section 4.5 [Protected and unprotected inserts], page 29.

c. the permanent, character and system variables.

d. the arguments and delimiters that were in the environment when the call containing
the text to be inserted was encountered.

e. the temporary variables that were in the environment when the call containing the text
to be inserted was encountered.

f. no macro labels.

The reader may have noticed that no initial environment contains any macro labels.
This is because it is not possible to use the MCGO macro to jump from one piece of text to
another. Thus each piece of text has its own macro labels, and macro labels are not carried
down from one piece of text to another.

4.5 Protected and unprotected inserts *

The difference between protected and unprotected inserts is best illustrated by an example.
Consider a macro ABC whose replacement text starts as follows:

MCDEF Temp AS LMN
%A1.

Assume ABC is called with Temp as its first argument. Then if % has been defined as a
protected insert, the value of %A1. is Temp. If it has been defined as an unprotected insert,
the value is LMN (note that MCDEF defines a local macro). If MCDEFG, which defines a global
macro, has been used in place of MCDEF then the value of %A1. would always be LMN. Hence
the purpose of a protected insert is to protect the insertion of a macro’s arguments or
delimiters from any changes in the local environment of the macro’s replacement text. It is
often useful, for instance, to switch into warning mode when entering the replacement text
of a macro but still to evaluate its arguments in free mode. In some applications the user
may wish to define two insert names, one protected and the other unprotected. In most
applications, however, it will be entirely immaterial which sort of insert is defined.

To complete the definition of the previous Section, the initial local name environment
when inserted text is evaluated is as follows:

e If the insert is a protected insert then it is the local name environment that was in
force when the call containing the inserted text was encountered.

e If the insert is an unprotected insert then it is the local name environment that was in
force when the insert was encountered.

4.6 Ambiguous use of names *

When defining new constructions the user should be careful to avoid certain clashes of name.
It would obviously be foolish, for instance, to choose the name MCDEF for a new construction.
ML/I has a fixed set of priority rules for dealing with multiply-defined names, and these
are listed below. However, for the reader who is not interested in these complications
the following simple rule for defining new constructions is sufficient to avoid difficulty:
choose the delimiters to be different from all other environmental names (i.e. the names of

Chapter 4: Operation macros and their use 30

macros, inserts, skips, warning markers and stop markers in the current environment). It is
quite acceptable, of course, to choose the same representation for the secondary delimiters
of different constructions. For example, all macros could have a newline as their closing
delimiter. Furthermore it is perfectly in order to have several different names all beginning
with the same atom(s); for example three separate macros could have names RETURN, RETURN
TO and RETURN IF. ML/I always tries to find the longest name it can, so in this example it
would only call the RETURN macro if RETURN was not followed by TO or IF. The reader who
is prepared to adopt the simple rule above can skip the rest of this Section.

A name clash is considered to occur if an atom or series of atoms of the scanned
text can be interpreted in more than one way. Note that some environmental names are
ignored within certain contexts (for a complete list, see Section 3.4 [The method of searching
for delimiters|, page 22); thus a name can sometimes be multiply-defined without a clash
occurring. For example, in warning mode it is unambiguous to have a macro name the same
as an insert name since each is recognised in a different context.

When a name clash does occur, the following rules are applied in order until all ambi-
guity is removed:

a. Exclusive delimiters take precedence over everything else.

b. A longer delimiter takes precedence over a shorter one (as illustrated by the above
RETURN example).

c. Secondary delimiters take precedence over environmental names.
d. Local environmental names take precedence over global ones.

e. The most recently defined environmental name takes precedence.

4.7 Implications of rules for name clashes *

Some implications of the rules are:

e A construction may be overridden by redefining it. It is even possible to redefine a
macro within its own replacement text. If it is desired to achieve the effect of deleting
a macro name PQR from the environment this can be achieved by defining PQR as a skip
using the MCSKIP macro (see Section 5.2.3 [MCSKIP], page 43) as follows:

MCSKIP D, <PQR>

(PQR is enclosed in literal brackets to prevent it being called). This technique can be
used for all construction names. Note that when a construction is redefined its old
use is not completely deleted (no storage is released) and it is possible under some
circumstances to re-incarnate the old usage. For example the overriding use may have
restricted scope or it may be deleted by one of the macros of Section 5.2.5 [MCNOWARN
MCNOINS MCNOSKIP MCNODEF], page 46, such as MCNOSKIP.

e It is usually acceptable to choose a construction name to be the same as the secondary
delimiter of another construction. For instance, there is no harm in choosing IF as a
macro name, even though it is a delimiter of MCGO. The only restriction on the use of IF
would be that it could not be called within the first argument of MCGO (this restriction
only applies in free mode; in warning mode there would be no restriction).

e A technique (described in Section 7.4.8 [Constructions with restricted scopes], page 79)
can be designed to give constructions different meanings in different scopes.

Chapter 4: Operation macros and their use 31

e If it is desired to design a language where each macro call occupies one line, it is
practicable to define newline as an exclusive delimiter and also as a warning marker
or as a part of a composite macro name (for instance, {NL} GOTO could be a macro
name). However, it is usually better to use startlines in this kind of situation.

e If each of GO, GO TO, and TO THE END are macro names then:
GO TO THE END
is interpreted as a call of GO TO, not as a call of GO and a call of TO THE END. This is
because the rules of the previous Section are applied at each step in the scan. There

is no mechanism for looking ahead and thus deciding, for instance, to take a shorter
delimiter at one step in order to get a longer one later.

Chapter 5: Specification of individual operation macros 32

5 Specification of individual operation macros

This Chapter contains descriptions of the operation macros which should be present in every
implementation. In addition, each implementation may have its own particular operation
macros (see Section 1 of relevant Appendix).

Arguments of operation macros are evaluated before being processed, in the same
way as arguments of substitution macros. Leading and trailing spaces are deleted before
evaluation in all cases.

Descriptions of the operation macros have been arranged in a standard format which
consists of a number of subsections. These subsections, in order of occurrence, are described
below. In some cases, a particular subsection is omitted, if not relevant.

1. Purpose.
2. General form.

3. Examples. Examples may not be comprehensible until further subsections have been
read. Each example is independent of all the others.

4. Restrictions. This subsection describes any restrictions on the form that the values
of the arguments of the macro can take. If this subsection is omitted, there are no
restrictions.

5. Order of evaluation *. This subsection describes the order in which arguments are
evaluated. It is omitted if the order is sequential. The order of evaluation is, of course,
immaterial in all but the most pathological cases. Note that any change in the name
environment caused by the call of a NEC macro does not come into effect until all its
arguments have been evaluated. It is possible for an operation macro to be aborted
due to an error before all its arguments have been evaluated.

6. System action. This subsection describes the action performed by ML/I at a call of the
macro. A reference to the current environment means the environment in force when
the macro was called. Apart from the system functions, all operation macros have a
null value.

7. Notes. This subsection contains nothing new, but attempts to bring out more clearly
points implied by the preceding material.

Before describing the individual operation macros, it is necessary to describe how to
define delimiter structures, since all the operation macros which define new constructions
have an argument that specifies the delimiter structure of the construction.

5.1 Specification of delimiter structures

Delimiter structures are defined by writing a structure representation, which defines all the
delimiters in the structure and the successor(s) of each. The atoms that make up a delimiter
are specified by a delimiter name, which is written in the following way:
{atom} [(WITH) {atom} *7]
(WITHS)

The difference between WITH and WITHS is as follows. If two atoms are linked by WITHS, this
means that any number of spaces (including none) may occur between the atoms when the
delimiter is used. WITH, on the other hand, means that no intervening spaces are allowed.

As an example, the delimiter names of a macro of form:

Chapter 5: Specification of individual operation macros 33

COMPARE CHARACTERS {argument 1} /// {argument 2} ;
would be:
1. COMPARE WITHS CHARACTERS
2. / WITH / WITH /
3. ;
If, for some reason, it was desired to restrict the number of permissible spaces between
COMPARE and CHARACTERS to one, then this would be specified by:
COMPARE WITH SPACE WITH CHARACTERS
Note that at least one space must be allowed between COMPARE and CHARACTERS because
otherwise they would not be recognised as separate atoms. Thus, in the general case,

a delimiter name is in error if two atoms are connected by WITH and neither atom is a
punctuation character.

It is now necessary to consider how delimiter names are combined to form a structure
representation. In the simplest case, the case of a construction with fixed delimiters, this is
done simply by concatenating the delimiter names in the order in which they are to occur.
Thus the complete structure representations of some of the constructions used as examples
in this manual (see Section 2.10 [Name environment used for examples], page 20) are:

a. % .
b. < >
c. COMMENT ;
d. DO TIMES REPEAT
e. MOVE WITHS FROM TO ;

5.1.1 Keywords

Within a structure representation the atoms are separated out by layout characters, i.e.
spaces, newlines, tabs, etc.—in the above examples spaces have been used. Apart from
acting as separators, layout characters are totally ignored within structure representations.
Thus a problem arises when it is desired to specify a layout character as a delimiter, or as
a constituent atom of a multi-atom delimiter. This problem is overcome by using layout
keywords to stand for layout characters. In particular:

SPACE means a space

TAB means a tab

SL means a startline

NL means a newline

SPACES means a sequence of one or more spaces

In addition, each implementation may have its own extra layout keywords. See Sec-
tion 6 of the relevant Appendix for details. The characters represented by these keywords
are treated as layout characters and hence, within structure representations, are exactly
equivalent to newlines or spaces. Note that layout keywords only apply within structure
representations.

The following are examples of delimiter structures using layout keywords:

Chapter 5: Specification of individual operation macros 34

a. ESUB NL
b. SPACE
c. SL WITH * (a * character at the beginning of a line)
d. SPACE WITH SPACES (means two or more spaces)
e. LD WITH SPACES SPACES NL
A construction defined using e) above would be analysed thus:
LD X Y {nL}
N\ o __ /N __ / |
| | |
delimiter O delimiter 1 delimiter 2

Note how all the spaces following LD are absorbed into the name; if they had not been
defined to be part of the name they would have been taken as the first delimiter.

It is permissible to use SPACES before or after WITHS; in these cases it is exactly equiv-
alent to SPACE.

In addition to these layout keywords, there are other keywords that apply within struc-
ture representations. These are: WITH, WITHS, OPT, OR, ALL and any atom commencing with
the letter N followed by a digit. Keywords are reserved words and cannot be used as the
atoms of delimiters. However, if it is necessary to define, say, WITH as a delimiter name,
then the keyword WITH could be changed to something else (e.g. +) by using the MCALTER
macro described in Section 5.2.8 [MCALTER], page 49.

5.1.2 The consequences of evaluation

Since structure representations occur as arguments to operation macros, they are evaluated
before being processed. Two consequences of this, one beneficial to the user and the other
a nuisance, are as follows.

The beneficial consequence is that much-used alternatives can be generated artificially.
Assume, for example, that a large number of macros have the form:

NAME ({argument}) {NL}

where NAME varies from macro to macro. In this case it would be useful to define a macro
PARENS with replacement text:

WITH () WITH NL
Then a macro DOG of the above form could be defined by writing:
DOG PARENS

The mischievous consequence arises if an attempt is made to redefine a macro. Assume
that a macro EMPLOYEE is defined thus:

MCDEF EMPLOYEE AS < J. SMITH >
and then subsequently an attempt is made to redefine it by writing:
MCDEF EMPLOYEE AS < J. BLOGGS >

In this second definition, the structure representation is J. SMITH since EMPLOYEE is replaced
by its value. Hence a macro J would be defined with secondary delimiters . and SMITH.
The end result would probably be a puzzling error message, perhaps that a delimiter of the
macro J was missing.

Chapter 5: Specification of individual operation macros 35

To avoid problems such as this, it is imperative to enclose a name in literal brackets
if it is being redefined. The same applies if the name of one macro occurs as a delimiter
of another. In fact, it is not a bad rule to enclose all structure representations in literal
brackets except where constructions such as PARENS are being used. The correct way to
redefine EMPLOYEE would be:

MCDEF <EMPLOYEE> AS < J. BLOGGS >

5.1.3 Introduction to more complicated cases *

The Sections which follow describe facilities for setting up more and more elaborate delimiter
structures. Readers are recommended to read on until they know enough for their own
applications, and then to skip the rest. Readers who are only interested in fixed delimiters
may give up now.

In order to specify the delimiter structure of a construction it is necessary to specify
the name(s) of the construction and the successor(s) of each delimiter that is not a closing
delimiter. In the simple cases described above, the structure representation consisted of the
name of the construction, and then each succeeding delimiter followed by its successor until
the closing delimiter. In more complicated cases it is necessary to have two other mecha-
nisms for specifying successors, namely option lists and nodes. Furthermore it is convenient
to imagine that a special symbol @ occurs at the start of each structure representation, and
another symbol e at the end. With this convention any successor of @ is the name of a
construction, and any delimiter with e as a successor is a closing delimiter. The paragraphs
which follow contain informal introductions to the concepts of option lists and nodes. More
exact details are given in the next Section.

Option lists are used to specify that a delimiter has several optional alternatives as
successor. The essential form of an option list is:

OPT {branch 1} OR {branch 2} OR . . . OR {branch N} ALL

The ordering of the branches is immaterial. An example of the use of an option list is in
the following structure representation for the ESUB macro:

ESUB OPT TAB OR NL ALL

If, in addition, it was decided to allow SUBTRACT as an alternative name to ESUB, then its
structure representation would be:

OPT ESUB OR SUBTRACT ALL OPT TAB OR NL ALL

In the ordinary way, the successor of the delimiter at the end of a branch is taken as the
delimiter following the ALL concluding the option list. In other words, the branches may
be thought of as coalescing at the delimiter following ALL (thus in the example above both
ESUB and SUBTRACT have either tab or newline as alternative successors, and both tab and
newline have the imaginary symbol e as successor and are therefore closing delimiters).
However, as will be seen, it is possible to override this coalescing effect by the use of nodes.

Nodes are used for defining the successor of a delimiter to be a delimiter or option list
elsewhere in the structure representation. The use of nodes in structure representations is
analogous to the (much despised) use of labels in programming languages. As the reader
will know, the statements in a programming language are written in sequence and the
‘successor’ of each statement is normally taken as the statement which follows. However,
the user can specify a different successor by the use of labels. A label is ‘placed’ on one

Chapter 5: Specification of individual operation macros 36

program statement and is then ‘gone to’ after any program statement which requires the
labelled statement as successor. In exactly the same way, nodes are used to specify the
successors of delimiters.

A node is represented as a node flag followed by a positive integer. The normal node flag
is the letter N, but this can be changed if desired using the MCALTER macro of Section 5.2.8
[MCALTER], page 49. It will be assumed in this manual that the node flag is N. A node
is placed by writing its name before any delimiter name or option list. A node can be
‘gone to’ only from the end of a branch of an option list or from the end of a structure
representation. A ‘goto’ is indicated simply by placing the name of the appropriate node at
the desired point (although the name of a node is used both to place it and to go to it, there
is no ambiguity, owing to the different context in which each occurs). As a simple example
of the use of nodes, consider the structure representation of a SUM macro which allows any
number of arguments separated by plus or minus signs and terminated by a semicolon. A
typical call of SUM would be:

SUM A+B-C+ D ;
The structure representation of SUM is:
SUM N1 OPT + N1 OR - N1 OR ; ALL

This is interpreted thus. SUM is followed by either a plus sign, a minus sign or a semicolon.
Node N1 is placed before the option list. The successor of both plus and minus is defined
by going to N1, and N1 is associated with the alternatives plus, minus and semicolon. The
successor of semicolon, on the other hand, is taken as the delimiter which follows ALL, which
is o. Hence the semicolon is a closing delimiter.

There are no particular restrictions on the use of nodes. Any number of nodes may
be placed within a structure representation provided, of course, that they have different
numbers. Any positive integers may be chosen to designate nodes; no particular sequence is
required. Node numbers are local to the structure representation in which they occur, and
hence there is no relation between the nodes of one structure representation and those of
another. Thus the same node numbers may be used in each case. There are no restrictions
on the scope of a ‘goto’; thus it may dive into an option list or alternatively come out of
one.

The node NO (N zero) has a special usage, namely to denote an exclusive delimiter.
Node NO may be gone to, but it cannot be placed. If the successor of a delimiter is specified
by NO, then this delimiter is taken as an exclusive delimiter. Apart from NO, it is illegal to
go to a node without placing it.

5.1.4 Full syntax of structure representations *

Before describing the general form of a structure representation, it is necessary to describe
a number of syntactic sub-components. These are:

a. A nodeplace represents the placing of a node, and is specified by the node flag followed
by an unsigned positive integer.

b. A nodego represents the action of going to a node, and is also specified by the node
flag followed by an unsigned integer (in this case, and case a) above, any redundant
leading zeros are ignored).

c. A delspec represents the specification of a delimiter or an option list, and is of form:

Chapter 5: Specification of individual operation macros 37

[{nodeplace} 7] ({delimiter name})
(OPT {branch} [OR [{nodeplace} ?] {branch} *7] ALL)

where a {branch} is of form:
{delimiter name} [{delspec} *7] [{nodego} 7]
(the reader may like to look ahead to the examples in Section 5.1.5 [Examples of complex
structure representations|, page 37, at this point). Note that each branch must begin with
a delimiter name, called the branch name. The branch names are the possible alternative
successors of the delimiter preceding the option list, and must all be different. Thus no

sequence of atoms must match more than one branch name, and the following option list is
therefore incorrect:

OPT X WITH SPACE WITHY . . . OR X WITHS Y . . . ALL
since X Y could be the name of either branch.

As was seen from the preceding example of the SUM macro, nodeplaces immediately
preceding an option list associate the node with all the options of the list. The syntax
forbids a nodeplace immediately after OPT, and a nodeplace immediately following OR has a
special meaning in that it associates the node not only with the delimiter name that follows
it but also with the names of all subsequent branches of the option list. As an example,
assume that the SUM macro was extended to allow the user the option of assigning the
answer by writing, for example:

SUM X = Y+Z;
to calculate Y+Z and assign the answer to X, or:
SUM Y+Z
to calculate Y+Z and leave the answer in an accumulator.

Here SUM has an optional first argument delimited by an equals sign. Its structure
representation could be written:

SUM OPT = N1 OR N1 + N1 OR - N1 OR ; ALL

In this case N1, which is placed after the first OR, is associated with the alternatives plus,
minus and semicolon.

It is also important to ensure that the structure does not become unconnected; for
example, the following structure representation is not valid:

N1 OPT , N1 OR : N1 All
because the structure is a closed loop.

Now that the sub-components have been described it is possible to give the general
form of a structure representation. This is:

[{delspec} *]1 [{nodego} 7]

5.1.5 Examples of complex structure representations *

This section contains the general forms of some possible constructions, together with the
structure representation of each.

Example 1

General form

Chapter 5: Specification of individual operation macros 38

Either:
MEASURE {arg A} METRES {arg B} . {arg C} ;
or
MEASURE {arg A} YARDS {arg B} FEET {arg C} INCHES {arg D} ;
Structure representation
MEASURE OPT METRES . OR YARDS FEET INCHES ALL ;

In the second form, if it is desired to allow the INCHES field optionally to be
omitted, then the structure representation could be written:

MEASURE OPT METRES . ; OR YARDS
OPT FEET N1 OR N1 INCHES ; OR ; ALL ALL

Here, N1 is associated with the possibilities INCHES and semicolon. In this
form the semicolon is mentioned three times. The structure representation
could also be written in the following form, where the semicolon only occurs
once:

MEASURE OPT METRES . N2 OR YARDS
OPT FEET N1 OR N1 INCHES N2 OR N2 ; ALL ALL

(The diagram in the next Section may be an aid to understanding this.)
Example 2

General form

[/ {argument} *?7] END

Structure representation
N1 OPT / N1 OR END ALL

This macro has two possible names: / and END.
Example 3

General form

(LOAD Q)
(LOAD Q) {arg 4}, {arg B} {NL}
(STORE)

where the newline is an exclusive delimiter.
Structure representation
OPT LOAD OR LOAD WITHS Q OR STORE ALL , NL NO

5.1.6 Possible errors in structure representations

Great care must be taken in writing structure representations, as errors can have very
unfortunate results. In complex cases it may be useful to use a diagram. For example, the
following represents the MEASURE macro of the previous Section in its final improved form:

Chapter 5: Specification of individual operation macros 39

MEASURE METRES
Q ————mmmmm—memem S S >—— N2
I
I
I YARDS FEET
Fommm tommm >-- N1
I
I
I INCHES
N1 ————————————- Fomm o >-- N2
I
I
| ;
N2 ————m—m—o—— o >—— o

Special points to be watched in writing structure representations are the use of keywords

and the possible differences between the structure representation as written and its evaluated
form. Remember that keywords cannot be used as delimiter names.

If ML/T does reject a structure representation as illegal (giving the message of

Section 6.4.6 [Illegal syntax of argument value], page 65), then the following are some of
the possible causes:

Illegal syntax; for example: unmatched OPT, node after OPT, two nodes in succession,
branch without a name, placing of node zero, node names such as N1A.

Keyword used as a delimiter.

Undefined or multiply-defined node.

Two branches with the same name.

Misuse of WITH or WITHS; e.g. GO WITH TO, X WITHS N1.
Structure with no closing delimiter.

Unconnected structure. For example, the delimiter D is not connected to the main
structure in the following case:

NOGOOD N1 OPT A N1 OR B N1 ALL D

Chapter 5: Specification of individual operation macros 40

5.2 The NEC macros

The operation macros which change the name environment are listed in this Section, one
to a page.
In summary, the NEC (name environment changing) macros are:

MCWARN define a local warning marker
MCWARNG define a global warning marker
MCNOWARN delete local warning markers
MCINS define a local insert

MCINSG define a global insert
MCNOINS delete local insert definitions
MCSKIP define a local skip

MCSKIPG define a global skip
MCNOSKIP delete local skip definitions
MCDEF define a local macro

MCDEFG define a global macro
MCNODEF delete local macro definitions

MCSTOP define a stop marker (always local)

MCALTER alter keywords and operation macro delimiters

All of these macros have a null replacement text.

Chapter 5: Specification of individual operation macros 41

5.2.1 MCWARN

Purpose
Definition of a local warning marker.
General form
MCWARN {arg A} {NL}
Ezamples
a. MCWARN $
b. MCWARN CALL WITHS THIS WITHS MACRO

Restrictions

{arg A} must be a structure representation consisting simply of a single de-
limiter name.

Notes

If a warning marker is not followed by a macro name, an error message is
generated. This message can be suppressed by setting S3 to a value of one.

System action

{arg A} is added to the current environment as a local warning marker, and
the current environment is placed in warning mode.

Chapter 5: Specification of individual operation macros 42

5.2.2 MCINS

Purpose

Definition of a local insert.
General form

MCINS [{arg A}, 7] {arg B} {NL}
Ezamples

a. MCINS * .
defines a protected insert with name * and closing delimiter ..

b. MCINS U, INSERT HERE
defines an unprotected insert called INSERT, with closing delimiter HERE.

Restrictions

{arg A}, if it exists, must consist of the letter P or the letter U. Redundant
spaces are allowed. {arg B} must be a structure representation of form:
{delimiter name} {delimiter name}
System action
A new local insert definition is added to the current environment. The de-
limiter structure of the new insert is represented by {arg B}, and the insert

is defined as protected unless {arg A} exists and consists of the letter U, in
which case it is defined as unprotected.

Notes

a. Unprotected inserts are only needed for sophisticated applications of
ML/I, and users with simple applications can safely omit {arg A}.

Chapter 5: Specification of individual operation macros 43

5.2.3 MCSKIP

Purpose

Definition of a local skip.

General form
MCSKIP [{arg A}, 7] {arg B} {NL}

Ezamples

a.

MCSKIP MT, ()
defines (and) as literal brackets.

MCSKIP N WITH . WITH B WITH . ;
deletes comments that start with N.B. and end with a semicolon.

MCSKIP DT, ’ °

d. MCSKIP NONL NL
e. MCSKIP T, NOPUNCT N1 OPT , N1 OR . N1 OR END ALL

causes all commas and periods between NOPUNCT and END to be deleted.
MCSKIP STATIC

deletes all occurrences of STATIC. Note that the delimiter structure of a
skip can specify any number of delimiters, although usually there will be
one, as in this example, or two.

Restrictions

{arg A}, if it exists, must have the form:

[(M) =7]
(D)
(T

Redundant spaces are allowed. {arg B} must be a structure representation.

System action

A new local skip definition is added to the current environment. The delimiter
structure of the new skip is represented by {arg B}, and the matched option,
the text option and the delimiter option are set if {arg A} contains the letter
M, T or D, respectively. If {arg A} is omitted, none of the options are set.

Notes

The letters in {arg A} can be in any order.

If {arg A} is omitted and {arg B} contains a comma, then this comma
should be enclosed in literal brackets to prevent it being taken as a de-
limiter of MCSKIP.

Chapter 5: Specification of individual operation macros

5.2.4 MCDEF

Purpose

Definition of a local macro.

General form
MCDEF [{arg A} VARS 7] {arg B} (AS) {arg C} {NL}

(8SAS)
Examples
a. MCDEF ARRSIZE AS 6
b. MCDEF ESUB NL
AS < CMA
ADD %A1.
CMA
>
is a definition of the ESUB macro used in examples.
c. MCDEF 6 VARS CALCULATE AS . . .
defines a macro named CALCULATE which has six temporary variables.
d. MCDEF (OPT + OR - OR * ALL) AS <%D1. %A1. %A2.>
This macro converts fully parenthesised algebraic notation to Polish Pre-
fix notation. Thus, for example, it would convert
((PI * 26)-LENGTH)
to
- % PI 26 LENGTH
e. MCDEF PARENS AS WITH () WITH NL
defines the PARENS macro used in Section 5.1.2 [The consequences of
evaluation], page 34.
f. MCDEF NOTE ; SSAS < [%WA1.] >
is the definition of the straight-scan macro NOTE used as an example in
Section 2.10 [Name environment used for examples], page 20. SSAS stands
for ‘straight-scan AS’.
g. MCDEF CALL NL NO AS . . .
defines a CALL macro with newline as an exclusive delimiter.
Restrictions

{arg A}, if it exists, must be a macro expression and {arg B} must be a
structure representation.

Order of evaluation

{arg A}, {arg C}, {arg B}.

System action

A new local macro definition is added to the current environment. The delim-
iter structure of this new macro is represented by {arg B}, the replacement
text is specified by {arg C'} and the capacity (i.e. the number of temporary
variables) is the greater of the result of {arg A} and three. The capacity is
three if {arg A} is omitted. The new macro is set up as a normal-scan macro if

Chapter 5: Specification of individual operation macros

MCDEF is called with delimiter AS, and as a straight-scan macro if the delimiter
SSAS is used.

Notes

a. The replacement text is normally enclosed in literal brackets to delay
evaluation until macro call time, and to ensure that any newlines within
the replacement text are not taken as the closing delimiter of MCDEF.

b. If it is desired that the replacement text be treated as a literal when
the macro is called as well as when it is defined, then it is necessary to
enclose the replacement text in double literal brackets (see example in
Section 7.3.1 [Interchanging two names|, page 70).

45

Chapter 5: Specification of individual operation macros 46

5.2.5 MCNOWARN, MCNOINS, MCNOSKIP and MCNODEF

Purpose

Deletion of local constituents of the current environment.

General form

a.
b.
c.
d.

MCNOWARN
MCNOINS
MCNOSKIP
MCNODEF

System actions

These macros respectively delete all local warning markers, all local insert
definitions, all local skip definitions and all local macro definitions from the
current environment. In addition, MCNOWARN causes the current environment
to be placed in free mode unless there are any global warning markers.

Notes

Note that these macros do not have newline as a closing delimiter.

In current implementations, no storage is released if a constituent of the
environment is deleted by one of these macros.

See the example in Section 7.3.4 [Deleting a macro|, page 71, for a method
of deleting individual constructions from the environment.

If MCNOWARN is to be meaningful, it must be preceded by a warning marker.

e. MCNODEF does not cause the operation macros to be deleted from the

environment since they are global.
There is no MCNOSTOP.

Chapter 5: Specification of individual operation macros

5.2.6 MCWARNG, MCINSG, MCSKIPG and MCDEFG

Purpose

Global equivalents of MCWARN, MCINS, MCSKIP and MCDEF.

General form

Similar to those of the corresponding local macros.

Ezamples
a.
b.
c.
d.

MCWARNG MACRO

MCINSG /.

MCSKIPG DT, TEXT : :

MCDEFG %A1. WITH (,) AS< . . .>

Restrictions

The restrictions on the forms of arguments are the same as for the correspond-
ing local macros.

System actions

As for the corresponding local macros except that the newly-defined con-
stituents are global rather than local.

Notes

a.

If a global NEC macro is called in the source text, the effect is the same
as if the corresponding local macro had been called (except for certain
differences if the name is multiply-defined). Global constructions are not,
however, deleted by the macros MCNOWARN etc. described in Section 5.2.5
[MCNOWARN MCNOINS MCNOSKIP MCNODEF]|, page 46. For reasons of efficiency
the user is recommended to use local macros where possible.

If a call of MCWARNG occurs, all subsequent text processing will be in
warning mode, since it is impossible to delete a global warning marker.

47

Chapter 5: Specification of individual operation macros

5.2.7 MCSTOP

Purpose
Definition of a stop marker.
General form
MCSTOP {arg A} {NL}
Ezamples
a. MCSTOP NL
b. MCSTOP STOP WITHS RIGHT WITHS HERE

Restrictions

{arg A} must be a structure representation consisting simply of a single de-
limiter name.

Notes
Stop markers are always local constructions; there is no MCSTOPG.
System action

{arg A} is added to the current environment as a stop marker.

48

Chapter 5: Specification of individual operation macros

5.2.8 MCALTER

Purpose

Alteration of the secondary delimiters of operation macros or of the keywords
used in structure representations.

General form
MCALTER {arg A} TO {arg B} {NL}
Examples
a. MCALTER
TO ;
MCALTER AS TO : ;

After these two calls of MCALTER, Example (a), of Section 5.2.3 [MCSKIP],
page 43, would be written:

MCDEF ARRSIZE : 6;

b. MCALTER WITH TO +
MCDEF JOIN + (WITH) AS . . .
MCALTER + TO WITH
Here, WITH is changed to + and then back to WITH again in order to define
macro JOIN(with delimiter WITH.
c. MCALTER N TO 9
This changes the node flag to the character 9.

d. MCALTER SPACE TO BLANK

Restrictions

{arg A} and {arg B} must be single atoms. {arg A} must be either a secondary
delimiter of one or more operation macros, or one of the keywords used in
structure representations. {arg B} must not be longer than the system name
of any delimiter or keyword matched by {arg A}. If {arg A} is the node flag
(i.e. the letter N or whatever has replaced it) then {arg B} must be a letter
or a digit.

Order of evaluation
{arg B}, {arg A}.
System action

{arg B} is substituted in place of {arg A} wherever {arg A} occurs as a
secondary delimiter of an operation macro or as a keyword.
Notes
a. MCALTER cannot be used to change the names of operation macros.

b. It is very dangerous to change a keyword or delimiter to become the same
as another keyword, for instance:

MCALTER UNLESS TO IF

The effect of an alteration such as the above on subsequent processing
is undefined, since it depends upon the order in which delimiters are
scanned.

49

Chapter 5: Specification of individual operation macros

. In the unlikely event of a call of MCALTER specifying several replacements,
some of which are valid, and some of which are invalid because of the
length of {arg B}, then the number of valid replacements that are per-
formed before the call is aborted is undefined.

. In the MCGO macro (and in any other macro where the action taken de-
pends upon the form of the delimiters), the delimiters are examined im-
mediately the macro is called and no call of MCALTER within an argument
can affect the action of the containing macro.

Since the operation macros are global, the effect of MCALTER is also global.

. It has been assumed in examples throughout this manual (apart from
this Section) that no calls of MCALTER have occurred.

Since MCALTER has a global effect, it is not recommended to use it locally
to a piece of replacement text. If it is used locally, MCALTER must be
called again before leaving the replacement text in order to cancel the
changes that have been made.
. A layout keyword can be MCALTERed to be the same as the character it
represents, e.g.:

MCALTER NL TO <

>

This will effectively delete the layout keyword, e.g. after the above
MCALTER, newline would stand for itself within structure representations
—it would not act as a separator.

50

Chapter 5: Specification of individual operation macros 51

5.3 System functions
The operation macros which return values are listed in this Section, one to a page. Note
that these macros do not have a newline as the closing delimiter.

In summary, the system function macros are:

MCLENG return the length of a character string
MCSUB return a substring of a character string

The replacement text of MCLENG is never null, but the replacement text of MCSUB can be
anything, including nothing at all.

Chapter 5: Specification of individual operation macros 52

5.3.1 MCLENG

Purpose

Function to find the length of a character string.
General form

MCLENG ({arg 4})

The left parenthesis is part of the macro name. It may optionally be preceded
by spaces.

Ezamples
a. MCLENG (%A1.)
b. MCLENG (%A1.%D3.PIG)

System action

The value of this function is the number of characters in {arg A}. This
number is represented as a character string in the way described in item (e)
in Section 2.6.7 [Macro elements], page 12.

Chapter 5: Specification of individual operation macros 53

5.3.2 MCSUB

Purpose
Function to access a substring.
General form
MCSUB ({arg A}, {arg B}, {arg C})
The left parenthesis is part of the macro name. It may optionally be preceded
by spaces.
Ezamples
a. MCSUB (ABC/XYZ, 3, 6)
This function has value C/XY.

b. MCSUB (ARGUMENT, -2, 0)
This function has value ENT, since non-positive results of {arg B} and
{arg C} specify offsets from the end of {arg A}.

c. MCSUB(%D2.,1,1)
The value of this function is the first character of the inserted delimiter.

d. MCSUB (%A3. Y/D3., 1, P3-T6 +7)

Order of evaluation
{arg A}, {arg B}, {arg C}. However, {arg C} is not evaluated if VB (see
below) is greater than L (see below) or is less than one.
System action
Let L be the number of characters in {arg A}, let RB be the result of {arg B},
and let VB be derived from these values by the following rule:
(RB if RB > 0
VB = (
(L + RB otherwise
Let VC be derived from the result of {arg C} by a similar rule. The value of
a call of MCSUB depends upon whether VB and VC describe a valid substring of
{arg A}. This occurs if:
1 <= VB <= VC <=L
If this relation does not hold, the value of MCSUB is null. If the relation holds,
the value of MCSUB is the substring of {arg A} from character position VB up
to and including character position VC, the first character of {arg A} being
taken as character position one.
Notes
a. In the case where the relation holds, the value of MCSUB consists of
VC-VB+1 characters.
b. The value of MCSUB is not itself evaluated. Thus the value of example b)
above would be ENT even if ENT was a macro.

Chapter 5: Specification of individual operation macros 54

5.4 Further operation macros

The remaining operation macros, i.e. those not falling into the previous categories, are
described below.

In summary, they are:

MCSET macro-time assignment statement
MCNOTE generate error and debugging messages
MCGO macro-time ‘goto’ statement

MCPVAR allocation of permanent variables
MCCVAR allocation of character variables

All of these macros have a null replacement text, although MCNOTE will generate output on
the debugging file.

Chapter 5: Specification of individual operation macros

5.4.1 MCSET

Purpose

Macro-time assignment statement.

General form
MCSET {arg A} = {arg B {NL}

Ezamples
a.
b.
c.
d.

MCSET P10 = 3

MCSET T6 = -4

MCSET TT3 = TP4 - 109 + 25/P1
MCSET T%Al. = A1, + 17

where the value of the inserted argument is a positive integer.

Restrictions

{arg A} must be the name of a macro variable in the current environment
({arg A} may contain redundant spaces at the beginning or the end). {arg B}
must be a macro expression if {arg A} describes an integer macro variable, or
an arbitrary character string (of length no greater than the current range) if
{arg A} describes a character macro variable.

System action

The result of {arg B} is assigned to the macro variable designated by {arg A}.

Notes

a.

When values are assigned to character variables, the whole of the second
argument to MCSET (after the usual deletion of spaces at the beginning
and end of the argument) is assigned to the specified character variable.
If leading or trailing spaces are to be preserved, the argument must be
enclosed in literal brackets. For example:

MCSKIP MT,<>

MCSET C1 = ABC length of contents of C1 is three
MCSET C1 = < ABC > length of contents of C1 is ten

No particular operators are provided for the manipulation of character
variables, since the basic ML/I facilities are sufficient. To add together
(concatenate) two character variables, simply insert both of them:

MCSET C1 = %C2.%C3.

95

Chapter 5: Specification of individual operation macros

5.4.2 MCNOTE

Purpose
Generation of user’s own error and debugging messages.
General form
MCNOTE {arg A} {NL}
Ezamples
a. MCNQOTE %A3. is illegal argument
b. MCNOTE Occurrence number %P1. of <CONT>

System action

{arg A} is printed on the debugging file (see Chapter 6 [Error messages],
page 62) as if it were a system message. A newline is inserted in front of it,
and it is followed by a printout of the context of the call of MCNOTE.

Notes

a. If example b) occurred in line 3 of a macro CONT, then the output might
be:

Occurrence number 33 of CONT

detected in

line 3 of macro CONT with no arguments
called from

line 267 of source text

b. Notes d) and f), of Section 6.2 [Notes on context print-outs|, page 62, do
not apply to the printing of {arg A}.

56

Chapter 5: Specification of individual operation macros

5.4.3 MCGO

Purpose
Macro-time ‘goto’ statement or conditional ‘goto’ statement.
General forms
a. MCGO {arg A} {NL}
b. MCGO {arg A} (IF) {arg B} (=) {arg C} {NL}
(UNLESS) (BC)
(EN)
(GE)
(GR)
The meanings of the respective mnemonic second delimiters are: Belongs
to Class, Equals Numerically, Greater than or Equals, and GReater than.

Examples
a. MCGO L1
b. MCGO LT1
c. MCGO L6 IF %D1. =+
d. MCGO LO UNLESS P3 - T5 GE - 6
e. MCGO L T3 - P7 + 4 UNLESS %A6. BC N
This tests whether argument six is a number (Belongs to the Class of
Numbers).
Restrictions

{arg A} must consist of the letter L (optionally preceded by redundant spaces)
followed by a macro expression. The result of this macro expression must
never be negative and, furthermore, it must not be zero if MCGO is called from
the source text. If the second delimiter is BC then {arg C'}, which is the name
of a class, must consist of one of the following letters:

I (for identifier)
L (for letter)
N (for number)

together with any desired number of spaces. If the second delimiter is EN, GE
or GR then {arg B} and {arg C'} must both be macro expressions.

Order of evaluation
{arg B}, {arg C}, {arg A}. In form b), {arg A} is evaluated only if the
condition holds.

System action for form b)
{arg B} and {arg C'} are compared to yield a true or false value. If the second
delimiter is EN, GE or GR, then numerical comparison is performed; otherwise
character comparison is performed. The method of comparison depends on
the second delimiter in the following way:

= A true value results only if {arg B} and {arg C} are identical
strings of characters.

o7

Chapter 5: Specification of individual operation macros

BC

EN, GE, GR

If {arg C'} is the letter I, then a true value results only if {arg B}
is of form:
[{letter} *]
{digit }
If {arg C'} is the letter L, then a true value results only if {arg B}
is of form:
[{letter} *]

If {arg C'} is the letter N, then a true value results only if {arg B}
is of form:

[(+) x7] [{digit} *]
)

In these cases a true value results only if the result of {arg B}
is, respectively, numerically equal to, greater than or equal to, or
greater than the result of {arg C'}.

If the comparison yields a false value and the second delimiter is IF, or if the
comparison yields a true value and the second delimiter is UNLESS, then no
further action takes place. Otherwise the system action for form a) is now

performed.

System action for form a)

Notes

Let N be the result of the macro expression in {arg A}. If N is positive, then
the point of scan is changed to the point associated with macro label N (see

below for a

fuller description). If N is zero, then processing of the current piece

of text is abandoned and evaluation proceeds as if the end of the current piece

of text had

been reached. Thus when N is zero a MCGO serves a similar function

to the RETURN statement found in many high-level languages. This ‘return’
facility may be used within inserted text or replacement text but not within
the source text.

a. Note that leading and trailing spaces are removed before {arg B} and
{arg C'} are evaluated. If it is required that these spaces take part in the
comparison, they should be enclosed in literal brackets.

b. If it is

desired to achieve the effect of a backward ‘goto’ in the source

text, then the required loop must be defined as the replacement text of a
macro call. For an example, See Section 7.4.1 [Macro-time loop]|, page 73.

c. Section 7.4.9 [Optimising macro-generated code], page 80, as well as
Section 7.3.5 [Differentiating special-purpose registers and storage loca-

tions],

page 71, contain examples of the use of MCGO.

d. The user should be very careful to differentiate between the two relational
operators = and EN. Note that the relation:

P1 EN P2

is true if the first two permanent variables have the same value, whereas:

o8

Chapter 5: Specification of individual operation macros

P1 = P2

is, of course, never true. Note that:
WP1. = %P2.

is equivalent to:

P1 EN P2.

Ezact description of a ‘goto’ *

The following is a more exact description of the action of ML/I in performing
a ‘goto’ when N is positive.

If label N, which is called the designated label, is present in the current envi-
ronment then the action of ML/I is simply to change the point of scan to the
point associated with the designated label. Otherwise a forward search for
the designated label is performed, starting at the current point of scan. If a
macro call or skip is encountered during this search, the search is suspended
until the end of the macro call or skip is found. Each time an insert is encoun-
tered outside a call or skip, the argument is evaluated and the search ends
when an insert which ‘places’ label N is found (or, in the error case, at the
end of the current piece of text). No value text is generated during a search
and no macro calls are performed (except conceivably during the evaluation
of the argument of an insert). At the end of the search the action of ML/I
is concluded by setting the point of scan as the point immediately after the
designed label.

Any labels encountered in the forward search (including the designated one)
are added to the current environment provided that it is possible to satisfy
the rules of part f) of Section 2.6.7 [Macro elements|, page 12. If an error is
detected during a forward search then the appropriate error message is output
in the normal way.

Chapter 5: Specification of individual operation macros

5.4.4 MCPVAR

Purpose

Allocation of extra permanent variables.
General form

MCPVAR {arg A} {NL}
Ezamples

a. MCPVAR 100

b. MCPVAR T1+3

Restrictions
{arg A} must be a macro expression.

System action

Let N be the result of {arg A}. If N is greater than the current number of
permanent variables, then the number of permanent variables is increased to
N; otherwise no action is taken. The values of the new permanent variables are
set to zero, and the values of the previously allocated ones remain unchanged.

60

Chapter 5: Specification of individual operation macros

5.4.5 MCCVAR

Purpose

Allocation of extra character variables.
General form

MCCVAR {arg A} [, {arg B} 7] {NL}
Ezamples

a. MCCVAR 50

b. MCCVAR T1x4

Restrictions
{arg A} and {arg B} must be macro expressions.
System action
Let N be the result of {arg A}, and let M be the result of {arg B}.

If this is the first call of MCCVAR in the current process, {arg B} must be
present, and the current range is set to M. If this is not the first call of
MCCVAR, {arg B} may be omitted; however, if {arg B} is present, M must
equal the current range (in other words, the range may not be altered once it
has been set).

If N is greater than the current number of character variables, then the number
of character variables is increased to N; otherwise no action is taken. The
values of the new character variables are set to null (the empty string), and
the values of the previously allocated ones remain unchanged.

61

Chapter 6: Error messages 62

6 Error messages

ML/T detects all errors and prints a message at every occurrence. An error message consists
of a statement describing the particular error that has been detected, with a print-out of the
current context. This print-out enumerates all the macro calls and insertions of arguments
or delimiters that are currently being processed, together with a line number to indicate
the state of the scan in each case. Error messages are printed on an implementation-defined
medium (see Section 4 of relevant Appendix) called the debugging file. This is normally an
interactive display, or a separate output file.

6.1 Example of an error message

An example of an error message is the following. Assume the user has written:

MCSET Y10 = 56

in the source text. Then the following message would be given:

Error(s)

Argument has illegal value, viz "Y10"
detected in

macro MCSET with arguments

1) Y10

2) 56

called from

line . . . of source text

6.2 Notes on context print-outs

The print-out of the context should be largely self-explanatory, but the following points
should be noted.

a.

b.

The line number is one greater than the number of newlines so far encountered in the
piece of text to which it refers. Line numbers refer to scanned text, not to value text.

If a macro call or insert straddles more than one line of text, then the line numbers of
both the beginning and the end of the call or insert are printed, e.g.:

called from lines 6 to 21 of source text

When the arguments of a call are enumerated, the text of each argument rather than
its value is printed.

If a piece of text in an error message consists of a single layout character, then the

corresponding layout keyword, enclosed in parentheses, is used in its place, for example:
Delimiter (NL) of macro X not found

In addition a null piece of text is represented by (NULL).

Any multi-atom delimiter occurring in an error message is printed in full. A space is
printed between two adjacent atoms if spaces are permitted between the atoms (i.e. if
WITHS has been used rather than WITH in their definition). Note d) above applies to
each atom. As an example, a message involving the multi-atom macro name MCSUB (
would read:

Macro MCSUB (called from .

Chapter 6: Error messages 63

f. There is an implementation-defined number 2N (see Section 4 of the relevant Appendix)
which is the maximum length of a piece of text that can be inserted in an error message.
If a piece of text is too long, the first N—4 characters and the last N—4 characters are
printed, separated by three dashes and some spaces.

g. If the text of an error message is about to overflow a line, then a newline is artificially
inserted.

6.3 Count of errors

If ML/T detects an error during processing, its normal action is to display the error message
and then continue. There are many cases where it is useless to continue, so a count of
errors is available in 85 (to be precise, 85 is a count of the number of times that the
message prologue Error (s) has been output on the debugging file).

Macro packages can test the value of S5 at regular intervals (for example, at the start
of each line) and can abort the process in some implementation-dependent way if S5 has
passed some threshold. S5 can be assigned to like any other macro variable—all ML/I does
to it is increment its value by one at each error.

6.4 Complete list of messages

This Section contains a complete list of all the error messages produced by ML/I; it also
includes other messages which are merely informational.

6.4.1 Illegal macro element

Message
{flag} {number} is illegal macro element
Description

The {number}, which is the value of the subscript or macro expression asso-
ciated with the {flag}, is either too large or too small. Alternatively, macro
elements of the type designated by the {flag} do not exist in the current en-
vironment (e.g. there are no arguments or temporary variables in the source
text).

System action

The current operation macro or insert is aborted.

6.4.2 Arithmetic overflow
Message

Arithmetic overflow
Description

Overflow has occurred during the evaluation of a macro expression or sub-
script. This message occurs when an attempt is made to divide by zero.
It may also occur under other circumstances, but these are implementation-
defined (see Section 5 of relevant Appendix).

System action

The current operation macro or insert is aborted.

Chapter 6: Error messages

6.4.3 Illegal input character
Message

Illegal input character
Description

A character of the source text is not in the character set of the implementation.
System action

The illegal character is replaced by a fixed implementation-defined character
called the error character (see Section 4 of relevant Appendix). A typical
error character is the question mark.

6.4.4 Illegal macro name

Message
Illegal macro name after warning, viz "{atom}"
Description

A warning marker is followed, possibly with intervening spaces, by the given
{atom} which is not a macro name (nor the start of a multi-atom macro
name). If this error occurs within an argument, the above message is printed
both when the argument is originally scanned and also each time it is inserted.

System action

The warning marker is treated as if it had not been recognised as an environ-
mental name, and the atom which follows is treated as if no warning marker
had occurred. Thus, for example, a skip name following a warning marker
will be treated as a skip name.

This message is suppressed altogether if system variable S3 is set to one (see
Section 8.2 [Use of S1 to S9], page 82).

6.4.5 Unmatched construction

Message
Delimiter {name} [or {name} *7] of (macro) {name}
(skip)
(insert)

in line {number} of current text not found
Description

The given construction which starts in the given line of the current piece of
text is not complete. Note that the line number is relative to the current piece
of text. When the error was detected the scan was searching for the given
delimiter (or for one of the given alternative delimiters). The error is detected
only when the scan reaches the end of the source text or the end of a piece of
inserted text or replacement text, or a stop marker is encountered.

Possible causes

A mismatch of the delimiters of a construction nested within the given one
can cause this error since delimiter matching is liable to get out of phase as
a result. Alternatively, an incorrect specification of a delimiter structure can

Chapter 6: Error messages 65

cause delimiters to be matched in a way not intended by the user and, again,
the error may be in a nested construction rather than in the given one.

System action

In the call and insert cases, the effect is as if the text from the macro or insert
name to the current point of scan was deleted. In the skip case, text skipped
over is treated in the normal way and the skip is artificially terminated.

6.4.6 Illegal syntax of argument value
Message

Argument {number} has illegal value, viz "{value}"
Description

The given value of an argument to an operation macro or insert has not the re-
quired syntax. For operation macro arguments see appropriate ‘Restrictions’
subsection of Section 5.2 [The NEC macros], page 40, Section 5.3 [System func-
tions], page 51, or Section 5.4 [Further operation macros|, page 54, or if the
argument is (supposed to be) a structure representation then see Section 5.1.6
[Possible errors in structure representations|, page 38. For arguments to in-
serts, see Section 2.6.7 [Macro elements|, page 12.

System action

The current operation macro or insert is aborted.

6.4.7 Redefined label

Message
Label {number} is multiply-defined
Description

An attempt has been made to re-define a label that has already been defined
within the current text.

System action

The new definition is ignored.

6.4.8 Undefined label
Message

Label {number} referenced in line {number} of current text not found
Description

A call of MCGO references an undefined label. This error is detected when the
scan reaches the end of a piece of text (since it performs a search for the
missing label). If any constructions are unmatched, the relevant message(s)
(of Section 6.4.5 [Unmatched construction], page 64) are printed with this
message.

Possible causes

An attempted backward MCGO in the source text or an attempted MCGO from
one piece of text to another can cause this error. Alternatively, it can be
caused by an unmatched construction within the scope of a forward MCGO.

Chapter 6: Error messages

System action

The effect is as if the designated label had been found at the very end of the
current piece of text.

6.4.9 Storage exhausted
Message

Process aborted for lack of storage
[possibly due to {other messages} 7]

Description

ML/T has used up all its available storage. If the current text is the source text
then the following additional information is given: if there are any construc-
tions currently unmatched, or if a search is being made for a macro label as the
target of a MCGO, one or more of the relevant messages (of Section 6.4.5 [Un-
matched construction], page 64, and Section 6.4.8 [Undefined label], page 65)
are printed with this message.

Possible causes

Storage is taken up by macro variables, by the name environment, by a macro
call or insert in the source text, and by nested calls and/or inserts. Hence an
unmatched macro call in the source text or a call with a very long argument
can cause this error. Alternatively, it can be caused by an endless or very deep
recursive nest, by the name environment being too big, or by a combination
of all these factors.

System action

The current process is aborted.

6.4.10 System error

Message
System error {number}
Description

There has been a machine error, an operating error or an error in the im-
plementation of ML/I. The value {number} indicates the location within the
ML/I logic where the error was detected, and in general will be useful only
when reporting the error to the implementor.

System action
The current process is aborted.

6.4.11 Subsidiary message
Message

(Macro) {name} aborted due to above error
(Insert)
Description
This message occurs as a subsidiary message every time an error causes the

operation macro or insert currently being performed to be aborted. Any
construction that has been aborted is given a null value.

66

Chapter 6: Error messages 67

6.4.12 Statistics
Typical

At end of process: {number} lines, {number} calls
Description

The occurrence of this message is implementation-defined (see Section 4 of
relevant Appendix). It is usually output at the end of a process and sometimes
at intermediate stages as well. The number of lines of source text that have
so far been scanned, together with the total number of macro calls performed
(the value used as an initial setting of T2) is output.

6.4.13 Version number and current constructions

Message

Version {version-string}
Séops a?e

Mécros are

w;rningé are

Iﬁserts'are

Skips a?e

Description

It is implementation-defined whether this message is output by default.
{version-string} is the version of the machine-independent logic of ML/I.
The version message is followed by a list of all the currently defined
constructions, grouped by type.

This message is purely informational, but may be useful in identifying certain
problems.

6.4.14 Implementation-defined messages

Description

Each implementation may have its own particular messages. See Section 4 of
the relevant Appendix for details.

Chapter 7: Hints on using ML/I 68

7 Hints on using ML/I

7.1 How to set up the environment

It is best, where possible, to write all the NEC macro calls to set up the environment at
the start of the source text (on many implementations, there is a facility for using multiple
input files, so these can be placed into a separate ‘prologue’ file). The name environment will
normally contain an insert definition, and it is a good idea to define this first. Choose some
atom(s) as the insert name that will not occur naturally in the source text to be processed.
Also define a pair of literal brackets, again choosing atoms that do not occur naturally in
the source text. Thus do not use < and > if these symbols are used to represent ‘less than’
and ‘greater than’. Finally, define the required macros, not forgetting to enclose arguments
in literal brackets where necessary. It may be useful to have a systematic convention for
macro names, for example starting every macro name with the same letter. However, due to
the randomising technique used in the internal working of many implementations of ML/I,
it is not advisable to choose macro names all of the same length and all ending with the
same character, as this would slow down execution.

7.2 Possible sources of error

The following Sections illustrate some areas where the user of ML/I should take special
care.

7.2.1 Jumping over expanded code

If macros are used in an assembly language, great care must be taken with instructions of
the form ‘jump to location counter + N’, since there may be macros within the scope of
the jump which expand into several machine instructions. The same applies to machine
instructions of the form ‘skip one instruction’. For this reason it is helpful to choose macro
names that cannot be confused with the names of machine instructions.

7.2.2 Generation of unique labels

If a macro generates code which involves an execution-time label, then a different label
must be generated at each call of the macro. The technique described earlier, in part b) of
Section 2.6.8 [Insert definitions|, page 12, can be used for this purpose. The same applies,
in some cases, to execution-time temporary variables.

7.2.3 Lower case letters

Note that only upper case letters may be used for vocabulary words of ML/I. This applies
to the names and secondary delimiters of operation macros, to keywords and to insert flags.
Further note that, for example, PIG, Pig and pig are three different atoms.

7.2.4 Use of newlines in definitions

Remember that layout characters within replacement text are treated like any other charac-
ters. They should therefore be used with great care as they affect the format of the output
text. Thus:

Chapter 7: Hints on using ML/I 69

MCDEF LOAD AS <LD>
LOAD X

would generate:
LD X
whereas:

MCDEF STORE
AS <ST
>

STORE Y

would generate:

ST
Y

Moreover:

MCDEF JUMP AS

JUMP LB6

would generate:

B
LB6

since JUMP would be defined as a null macro.

7.2.5 Use of redundant spaces

As a general rule, extra spaces are ignored within text that forms an instruction to ML/I,
but are treated like any other character within text that ML/I manipulates.

Spaces may be chosen as construction names, but, in any context where spaces are
ignored, they are ignored even if space is a construction name. In particular, spaces are
ignored after warning markers so, when in warning mode, it is not possible to have a macro
name commencing with a space.

Below is a list of some of the places where spaces are ignored:

At the beginning or end of an argument to an operation macro (before evaluation).
Ditto for an argument to a substitution macro, provided the insert flag B is not used.
After a warning marker.

Within a macro expression (except within variable names or constants).

Within the argument to an insert (except within variable names or constants).

- o 0 T

Within the values of those operation macro arguments that specify options. Within
structure representations, one or more spaces act as a separator.

7.3 Simple techniques

This Section illustrates a few techniques for solving some simple problems. In general, only
one solution is given but there are often several equally good solutions. In some cases a
problem has been described in terms of the use of ML/I as a preprocessor to a particular
language, but in each case the problem has counterparts in other applications.

Chapter 7: Hints on using ML/I 70

7.3.1 Interchanging two names
Problem

It is desired to interchange the names PIG and DOG in a piece of text.
Solution

The complete name environment is set up as follows:

MCSKIP MT, < >
MCDEF PIG AS <<DOG>>
MCDEF DOG AS <<PIG>>

and the desired result is achieved by evaluating the given text under this
environment.

Notes

a. In this example there is no necessity to have an insert definition in the
environment.

b. Notice that two pairs of literal brackets are used to surround the pieces
of replacement text. One pair is stripped off at definition time and the
second at replacement time. If the brackets were omitted, ML/I would
endlessly replace PIG by DOG by PIG by DOG . ..

7.3.2 Removing optional debugging statements
Problem

It is desired to include a number of extra statements in a FORTRAN program
in order to aid in debugging its execution. These are to be removed when the
program is debugged. Each statement ends with a newline.

Solution

Some unique atom, say DEBUG, is written at the beginning of each debugging
statement. Before the FORTRAN program is compiled it is passed through
ML/I. If it is desired to include the debugging statements, then the following
skip definition is placed in the name environment:

MCSKIP DEBUG

This causes each occurrence of DEBUG to be deleted. When it is desired to
delete the debugging statements then the following skip definition is used:

MCSKIP DEBUG NL

If DEBUG is always to be at the beginning of a line, it may be better to define
the skips with:

MCSKIP SL WITH DEBUG
and
MCSKIP SL WITH DEBUG NL

as this will prevent matches with DEBUG if it occurs elsewhere in the scanned
text.

Chapter 7: Hints on using ML/I 71

7.3.3 Inserting extra debugging statements
Problem

It is desired in an X123 Assembly Language program to replace every occur-
rence of DAC COW (deposit accumulator at COW) by a call to a subroutine (which
perhaps prints the value assigned to COW). This call has form JMS TYPCOW.

Solution

MCDEF DAC WITHS COW AS <JMS TYPCOW>

7.3.4 Deleting a macro
Problem
It is desired to delete the macro GONE from the current environment.
Solution
The following skip accomplishes this:
MCSKIP D, <GONE>
Notes

a. The literal brackets prevent GONE being called during the evaluation of
the second argument of the above MCSKIP.

b. Strictly speaking, the macro GONE is overridden rather than deleted (see
part a) of Section 4.7 [Implications of rules for name clashes|, page 30.

7.3.5 Differentiating special-purpose registers and storage
locations

Problem

It is desired to define an INTERCHANGE macro for X123 Assembly Language so
that, as well as being used to interchange the values of two storage locations,
it can be used to interchange the accumulator with a storage location. In the
latter case ACC is written as the first argument of the call.

Solution

Assuming the existence of a MOVE FROM macro, which moves the value of one
storage location into another, the definition of INTERCHANGE is written:

MCSKIP " WITH " NL

MCDEF INTERCHANGE WITH (,) WITH NL

AS <MCGO L1 IF %Al. = ACC

MOVE FROM %A2. TO TEMP;MOVE FROM %Al. TO %A2.;
MOVE FROM TEMP TO %A1l.;

MCGO LO
#L1. DAC TEMPAC "" deposit accumulator in TEMPAC
MOVE FROM %A2. TO TEMP;MOVE FROM TEMPAC TO %A2.;
LAC TEMP "" load accumulator from TEMP
>

Note the use of the initial skip here, to provide a comment facility.

Chapter 7: Hints on using ML/I

7.3.6 Testing for macro calls
Problem

It is desired to find out whether an argument of a macro call itself involves
any macro calls, inserts or skips.

Solution

Compare the written form of the argument with its evaluated form (it is
assumed that any construction occurring within the argument would cause
these two forms to be different). The following is an example of how the test
might be written:

MCGO L1 IF %Al. = %WA1.

Alternatively, if it was only required to test if the argument involved any
macro calls, the test might be written:

MCGO L1 IF MCNODEF%A1. = %A1l.
provided that % had been defined as an unprotected insert.

7.3.7 Searching

Problem

It is desired to search the source text to find all occurrences of given atoms.
Solution

Define macros such as:

MCDEF X
AS <MCNOTE HERE IS <X>
>

It is best to send the output text itself to a null output file so that the only
printed output is the MCNOTE messages.

7.3.8 Bracketing within macro expressions

Problem
Parentheses cannot be used within macro expressions.
Solution
Use nested inserts. For example to insert the value of:
(P1+6)/(P3-2)
write:
%hP1+6./%P3-2. .

7.3.9 Deletion from source text only

Problem

It is desired to delete a given atom only if it occurs in the source text.
Solution

Use temporary variable three, e.g.:

MCDEF X AS <MCGO LO IF T3 EN 1
%WDO . >

72

Chapter 7: Hints on using ML/I 73

7.3.10 Locating missing delimiters
Problem

A missing delimiter may cause ML/I to ‘run away’ while scanning, perhaps
causing it to exhaust the available storage. Although the error messages will
locate the problem, they are likely to be excessive.
Solution
Define a stop marker. Experience with stop markers has shown that, in nine
out of ten applications of ML/I, it is a good idea to include:
MCSTOP NL

in the environment. It is best to make this the last definition, since calls of
certain operation macros may legally straddle several lines.

7.3.11 Handling line-oriented input

Problem

ML/I treats its input as ‘free format’, whereas a particular piece of input is
line oriented and therefore difficult to handle.

Solution

Use startlines. For example, suppose that it is desired to handle labelled and
unlabelled statements in X123 Assembly Language separately. Assume that
statements are one per line, and that unlabelled statements begin with at
least one space, but that labels must occur at the start of a line. The macro
to handle unlabelled statements would look like this:

MCDEF SL WITH SPACES . . . NL AS .
and the macro to handle labelled statements could be defined as:
MCDEF SL. . . . NL AS .

remembering, of course, to turn startlines on (see Section 8.2 [S1 to S9],
page 82) before scanning the actual X123 program. Note that although both
macro names begin with the atom SL, ML /I will always try to find the longest
match, so there is no danger that an unlabelled statement will cause a call of
the macro intended for labelled statements.

Notes

It is possible to achieve a similar effect by using macros starting with a newline,
with the closing delimiter being another newline as an exclusive delimiter.
However, this is rather more tricky than using startlines.

7.4 Sophisticated techniques *

This Section illustrates some techniques which may be of value to the more sophisticated
user.

7.4.1 Macro-time loop

Problem

A macro-time iteration statement is required in order to generate repetitive
text.

Chapter 7: Hints on using ML/I 74

Solution

The macro MCFOR defined below serves this purpose. It allows the step size to
be optionally omitted; in this case a step size of one is assumed. MCFOR should
be regarded as a ‘black box’ by the reader who finds the definition below hard
to understand. The part labelled by L2 is to deal with a negative step size.

MCDEF MCFOR = OPT STEP N1 OR N1 TO ALL NL REPEAT
AS<MCSET %A1. = %A2.

MCSET T3 = 1

MCGO L1 IF T1 EN 4

MCSET T3 = %A3.

MCGO L1 IF T3 GR O

%L2.MCGO LO IF %AT1-1. GR %A1.

%AT1.MCSET %Al. = %Al. + T3

MCGO L2

%L1. MCGO LO IF %Al. GR %AT1-1.
%AT1.MCSET %Al. = %Al. + T3
MCGO L1

>

Examples

a. To generate the twenty instructions:

JMP LAB1
JMP LAB2

JMP LAB20
one could use:

MCFOR P1 = 1 TO 20
JMP LABYP1.
REPEAT

b. To generate the above twenty instructions in reverse order:
MCFOR P6 = 20 STEP -1 TO 1

JMP LABY,P6.
REPEAT

c. To generate the first ten powers of two:
MCSET P2 = 1
MCFOR P1 =1 TO 10

%P2.MCSET P2 = P2+P2
REPEAT

Notes

a. The controlled variable must be a permanent variable (if it were a tempo-
rary variable, MCFOR would try to use its own temporary variables rather
than those of the calling environment thus causing an error).

Chapter 7: Hints on using ML/I 75

b. The initial value, step size, and final value must be macro expressions not
involving temporary variables.

c. MCFOR is a substitution macro, not an operation macro.
d. Calls of MCFOR may be nested.

e. MCFOR can be used to perform loops within the source text, thus sur-
mounting the restriction that source text ‘gotos’ are not allowed.

7.4.2 Examining optional delimiters

Problem
An IF macro has form:

IF {arg A} (GE) {arg B} THEN .
(GR)
(LT)
(=)
(etc.)

Within the replacement text of IF, it is desired to examine the form of the
first delimiter and go to L1 if the delimiter is GE, to L2 if it is GR, etc. This
problem can obviously be solved by writing a large number of conditional MCGO
statements but this would make the IF macro very slow and cumbersome.

Solution
The various possible delimiters can be defined as macros thus:

MCDEF GE AS 1
MCDEF GR AS 2
etc.

and then the requisite switch statement can be written:
MCGO L%D1.
Notes

a. The definition of the delimiters of IF as macros does not affect the scan-
ning of a call of the IF macro since the use of an atom as a delimiter
takes precedence over its use as a macro name.

b. It is necessary to place the definitions of GE etc. after the definition of IF
or else to enclose the structure representation of IF within literal brackets.

¢. The technique will not, as it stands, work for name delimiters. However,
see Section 7.4.8 [Constructions with restricted scopes]|, page 79).

7.4.3 Dynamically constructed calls
Problem

It is required to implement a WHILE macro of form:

Chapter 7: Hints on using ML/I

WHILE {arg A} (GE) {arg B} DO

(GR)
(LT)
(=)
(etc.)
{arg C}
END

Within the replacement text of this macro it is desired to call the IF macro
with the first delimiter of this call of IF the same as the delimiter that oc-
curred in the call of WHILE. However, as was seen in Section 3.7 [Dynamically
generated constructions|, page 25, it is not possible to do this by writing:

IF . . . %WD1. . . . THEN .

Solution

Notes

It is necessary to use a temporary macro definition to build up the text for
the required call of IF and then to call the temporary macro. This could be
achieved thus:

MCDEF <temp> AS <IF> . . . %WD1. . . . THEN .
temp

a. WD1 was used rather than D1 since GE etc. are macros and it is not desired
to call them at this stage.

b. Note that the insert %WD1. is not enclosed in literal brackets and is thus
inserted when temp is defined. Thus if this delimiter were GR, then the
replacement text of temp would be:

IF . . . GR . . . THEN .
and calling temp would then accomplish the required call of IF.

c. temp is enclosed in literal brackets when it is defined in case there is
already a temp macro in existence. This might arise, for example, if the
WHILE macro was called recursively.

d. temp should be a local macro rather than a global one so that the storage
it occupies is released when an exit is made from the WHILE macro.

e. This general technique can be used in all cases where it is required to
build up a call dynamically. The next Section contains a further example
of the technique.

7.4.4 Arithmetic expression macro
Problem

A macro whose name is (has been designed so that, when supplied an arith-
metic expression as argument, it generates assembly code to calculate the
value of the expression and to place the resultant value in an accumulator.
This macro will be referred to as the parenthesis macro. A typical call of the
parenthesis macro might be:

(PIG + (Y/6)*Z - 16)

76

Chapter 7: Hints on using ML/I

This involves a nested call of the same macro. The arguments of the outer
call are PIG, (Y/6), Z and 16, and the delimiters are +, * and -. It is desired
to use this macro to implement a SET macro, which allows a macro expression
as argument. Calls of SET might be:

SET DOG =Y
SET VAR = (VAR + 6)/I3 - PIG
Solution
The solution to this problem is not to give the SET macro a complicated
delimiter structure but rather to regard it as a macro with two arguments.

The second argument is then passed down to the parenthesis macro, which
breaks it down into operators and operands. The SET macro is defined:

MCDEF SET = NL

AS <MCDEF temp AS <(>%WA2.<)>

temp

(instruction to store the result in %A1.)
>

Notes

a. Notice the use of temp to build up a call of the parenthesis macro. In the
second of the above examples of SET, for instance, temp would be defined
as:

((VAR+6) /13 - PIG)

When temp was called, it would result in a call of the parenthesis macro
with arguments (VAR+6), 13 and PIG.

b. It would have been wrong to call the parenthesis macro from within SET
by writing simply (%A2.), since this would have been interpreted as a
call with one argument.

7.4.5 Formal parameter names
Problem

It is desired to use the name TAXRATE for the first formal parameter of the
macro DEDUCT.

Solution
The first part of the definition of DEDUCT is written:
MCDEF DEDUCT . . . AS <MCDEF TAXRATE AS %A1.

Thereafter within the replacement text of DEDUCT, TAXRATE can be written in
place of %A1. whenever the first parameter is required.

7.4.6 Intercepting changes of state
Problem

It is desired in X123 Assembly Language to generate some decimal constants
within the replacement text of a macro SIZE. However, X123 Assembly Lan-
guage has two statements, DECIMAL and HEXADECIMAL, to control the base

77

Chapter 7: Hints on using ML/I

to which constants are to be written, and this might vary between calls of
SIZE. Furthermore, it is desired that a call of SIZE should not change the
base behind the user’s back.

Solution

A permanent variable, say P10, is used as a switch, the value zero being used
to indicate a hexadecimal base. The following is written at the start of the
source text:

MCSET P10 = 0

MCDEF HEXADECIMAL AS <MCSET P10 = O
%WDO . >

MCDEF DECIMAL AS <MCSET P10 =1
%WDO . >

and the definition of SIZE is written:

MCDEF SIZE AS <MCSET T1 = P10
DECIMAL

MCGO LO IF T1 EN 1
HEXADECIMAL
>

thus ensuring that the base is returned to its original state.
Note

This technique is also useful for the following problem: the user has written a
macro SUBS to generate code for subscripted vectors and it is necessary that
SUBS generates different code for the two following calls:

a. LAC SUBS (V, 1) Load accumulator from element
b. DAC SUBS (V, 1) Store accumulator in element
The problem is solved by using the above technique to cause LAC and DAC to

set a switch which the SUBS macro can then test to find out which instruction
preceded its call.

7.4.7 Remembering code for subsequent insertion
Problem

It is desired to design two macros, remember and insert, to enable the user
to remember text for subsequent insertion. These macros are used in the fol-
lowing way. remember is called with a piece of text as argument. remember
does not generate any code but remembers its argument for subsequent inser-
tion. When the insert macro is called, all the pieces of text that have been
remembered are inserted.

Solution

A sequence of global macros I1, I2, ..., IN is used, the value of N being given
by a permanent variable, say P10. Each macro represents a piece of text

78

Chapter 7: Hints on using ML/I

that is to be remembered. The definitions of remember and insert would be
written:

MCSET P10 = 0

MCDEF remember ;

AS <MCSET P10 = P10 + 1

MCDEFG I%P10. AS %A1l.

>

MCDEF insert AS <MCFOR P1 = 1 TO P10
RECALL I%P1.

REPEAT>

where MCFOR is the macro of Section 7.4.1 [Macro-time loop], page 73, and
RECALL is a macro defined thus:

MCDEF RECALL NL
AS <MCDEF temp AS %A1l.
temp>

An alternate solution, which is much faster but which places limitations on
the size of each item, can be devised using character variables. This is left
as an exercise for the reader, as it is merely a degenerate form of the above
solution.

Notes

a. The above solution tries to minimise the amount of storage used. It would

have been possible to do without the RECALL macro, but this would have
involved N redefinitions of temp within the MCFOR loop and so, albeit
temporarily, using up rather more storage.

Note that the macros I1 etc. must be global whereas the macro temp
should be local.

An apparently promising technique for this problem which may fail be-
cause of excessive use of storage is the following. The entire remembered
text is maintained by redefining the insert macro as below each time
remember is called:

MCDEF remember ;
AS <MCDEFG <insert> AS insertAl.
>

The trouble with this approach is that old versions of insert can never
be released, thus using up a very considerable amount of storage.

7.4.8 Constructions with restricted scopes

Problem

It is desired to assign different meanings to a macro X within different scopes.
One meaning is to apply within the replacement text of a set of macros M1,

Solution

, MN whereas another meaning is to apply elsewhere.

One solution is to redefine X as a local macro within each of M1 to MN, but this
is tiresome if N is large, and slower than the method below even if N is one.

79

Chapter 7: Hints on using ML/I

Notes

A better solution is to place the two following definitions at the start of the
source text:

MCDEFG X . . . AS <{replacement to be used in M1 to MN}>
MCDEF <X . . . > AS <{replacement to be used elsewhere}>

The second definition overrides the first. Within the macros M1 to MN the first
definition can be re-incarnated by calling MCNODEF, which deletes the second
definition. Any macros besides X that were used within M1 to MN should also
be defined as global.

a. This technique can be used in a variety of applications. It is the best
solution in almost all situations where a macro or set of macros has
restricted scope, but where this scope does not consist simply of the
replacement text of a single macro. Even in the latter case the technique
is useful as it is faster than setting up the local definitions every time a
macro is called.

b. This technique can be used to extend the technique described in
Section 7.4.2 [Examining optional delimiters|, page 75, to make it work
for name delimiters. For example, if a macro had alternative names A
and B and, within the replacement text of this macro, it was desired to
insert the number 206 if the name was A and the number 15 if the name
was B then this could be achieved, assuming % to be an unprotected
insert, by writing:

MCDEFG A AS 206
MCDEFG B AS 15
MCDEF <OPT A OR B ALL . . .>
AS <. . . MCNODEFY%DO. . . .>

7.4.9 Optimising macro-generated code
Problem

It is desired to optimise some assembler code generated by ML/I, in particular
to cut down possible inefficiencies at the boundary between successive macros.

Solution

There are basically two approaches to producing optimal code:

a. Code can be optimised as it is produced. Typically this would involve
using the permanent variables to maintain some sort of indication of the
previous instruction(s) generated.

b. A second pass can be made through the macro generated code, to search
for various inefficient sequences of instructions.

Except in simple cases, the second method is usually the better. In many
machines, considerable optimisation can be performed by maintaining where
possible an indication of the contents of the accumulator(s) or other special-
purpose registers and thus cutting out redundant loading instructions. This
can be done by defining macros to map into numbers all the variables used
in the code being generated. A permanent variable, say P1, could be used to

80

Chapter 7: Hints on using ML/I

indicate whether the accumulator was known to contain the current value of a
particular execution-time variable. If so, P1 could contain the number of the
variable, otherwise it could be zero. P1 would need to be zeroised when a label
was placed, a subroutine was called, etc. This might be achieved by defining
a macro with many alternative names, covering all the situations where the
accumulator was clobbered. The macro might be:

MCDEF OPT , OR JMS OR ADD OR . . . ALL
AS <MCSET P1 = 0
%WDO . >

(assuming that a comma marks the end of a label and JMS, ADD, etc., are
instructions that clobber the accumulator).

7.4.10 Macro to create a macro

Problem

This problem illustrates the use of a macro to set up the definition of another
macro. The problem is as follows. It is desired to design a macro EQUATE
which equates one vector to part of another. Thus the call:

EQUATE VEC1 TO VEC2 OFFSET 3

would cause each subsequent reference to an element of VEC1, which has form,

say:
VEC1({subscript})

to be translated into a reference to the corresponding element of VEC2, namely:
VEC2({subscript} +3)

Solution
The macro EQUATE would be defined thus:

MCDEF EQUATE TO OFFSET NL
AS <MCDEFG %A1. WITH () AS %A2.(<%A1.>+JA3.)
>

Ezamples
a. The call:
EQUATE VEC1 TO VEC2 OFFSET 3
would be equivalent to writing the definition:
MCDEFG VEC1 WITH () AS <VEC2(%A1.+3)>

Note

The main source of error in this sort of problem is to confuse the arguments
of the macro that creates the definition with the arguments of the new macro
being defined. The rule is that the latter should be enclosed doubly in literal
brackets. Hence in the replacement text of EQUATE, the arguments within
single literal brackets are the arguments of EQUATE, which are inserted when
the new macro is defined, and the argument within double literal brackets
is the argument of the new macro, which is inserted when the new macro is
called.

Chapter 8: Use of system variables 82

8 Use of system variables

8.1 System variable overview

As previously explained, system variables are introduced by the insert flag S. Their purpose
is to control certain aspects of the way ML /I operates, and also to report useful information
which may be used to change the way that macros operate.

System variables S1 to S9 are concerned with the basic operation of ML/I, and are
described in this Chapter.

System variables from S10 upwards are concerned with the way ML/I interacts with
its external environment; this is a machine dependent issue, and so the function of these
variables may differ considerably between implementations. These system variables are thus
described in the relevant Appendix.

8.2 Use of S1 to S9

Some of these variables merely report information, and changing them has no useful effect
(except perhaps to confuse the user). Others, as noted, will have a significant effect on the
way ML/I operates.

Use of any values other than those explicitly mentioned in this Section will have an
undefined effect.

S1: Startline control
S1 controls the insertion of startline characters on input.
e If S1 has the value zero, no startline characters are inserted; this is the initial setting.

e If S1 has a value of one, then the special startline character is inserted at the beginning
of every subsequent line read from the source text. This character can be processed
by ML/I in exactly the same way as any other punctuation character, but is always
discarded on output.

S2: Controlled line numbers

In many uses of ML/I, some predefined macros are applied to a piece of text. If errors
occur, the line numbers in the error messages do not correspond to a listing of the text
being processed. For example, if the macros occupy 93 lines, then ML/I takes the first
line of the text to be processed as line 94. This can be very confusing to the user of an
unfamiliar package of macros.

To remedy this, the source text line number is made accessible to the user by placing
it in S2.

S2 has an initial value of zero; ML /I increases it by one at the start of each line of the
source text (including the first), and assigns the new value of S2 to the internal count used
in error messages.

The user can change the value of S2 at will, and this will affect the value used in error
messages. It will not alter the position at which ML /I reads the source text (in other words,
it will not perform a seek).

Chapter 8: Use of system variables 83

Writers of packages of macros should, at the end of their macros, reset S2 to zero (or
whatever value makes the first line of the text to be processed line one—differences can
occur when newline is part of a construction name, as ML/I is sometimes looking ahead).

The value of S2 is also useful for other purposes, e.g. for generating unique labels or
for use in comments in generated output.

S3: Optional warning markers

If 83 has a value of one, ML/I suppresses the error message normally given if a warning
marker is not followed by a macro name.

This is useful if macro calls in the source text are only to be recognised in certain
positions, e.g. following a tab or at the start of a line. In such examples the characters ‘tab’
or ‘startline’ could be defined as warning markers, and, assuming that not all occurrences
need to be followed by macro calls, S3 could be set to one.

Note that, if a warning marker is not followed by a macro name, it is treated as if it
were not a construction name at all and is thus normally copied over to the value text. This
applies irrespective of whether S3 is being used to suppress the error message.

The following example illustrates how optional warning markers work:

MCDEF PIG AS POG

MCINS %.

MCSET S3=1

MCWARN +
+PIG,PIG,MCSET+%S3.+NOTMAC+++

would generate the value text:

POG,PIG,MCSET+1+NOTMAC+++

S4: Option on MCNOTE

If S4 has a value of one, MCNOTE suppresses all the contextual information normally given.
All that is output is the value of the argument of MCNOTE, preceded and followed by a
newline. For example:

MCSET S4 = 1
MCNOTE Message 1
MCNOTE Error in line %S2.

would produce the messages:

Message 1

Error in line .

If 84 has a value of zero, the normal contextual information is output.

S5: Count of processing errors

S5 contains the internal count of processing errors encountered so far. This can be useful if
the user wishes to check that a particular application has run smoothly, and can be accessed
at any time.

Chapter 8: Use of system variables 84

S6: Pseudo alphanumeric character

S6 contains a machine dependent character code. This character code specifies a non al-
phanumeric character which ML /I is to treat as if it were alphanumeric; i.e. not as a separate
atom, but potentially part of one. This is useful when processing programming languages
which allow other characters within identifiers.

For example, consider the following text:
CURRENT_POSITION

Normally, ML /T would consider this as three atoms:

a. CURRENT
b. _
c. POSITION

Assuming that the character code for the _ character was 95, then S6 could be set to
this value with:

MCSET S6=95
Subsequently, CURRENT_POSITION would be considered as a single atom.

Initially, S6 contains an implementation dependent value which does not match any
character in the character set (typically, this will be —1).

S7: Not used

S7 is not currently used, and its value is undefined.

S8: Not used

88 is not currently used, and its value is undefined.

S9: Not used

89 is not currently used, and its value is undefined.

Operation Macro Index

Operation Macro Index

MCALTER . ..o 49
MCCVAR ... 61
MCDEF ... 44
MCDEFGot 47
MCGO ..o 57
MCINS .. 42
MCINSG ..ot e 47
MCLENGt e 52
MCNODEF . ..o i 46
MCNOINS ... e 46

85
MCNOTEt i 56
MCNOWARN e 46
MCPVAR . ..o 60
MCSET ..ot 55
MCSKIP ...t 43
MCSKIPGot i 47
MCSTOP . ..ot 48
MCSUB ... 53
MCWARN ... 41
MCWARNG ... 47

Concept Index

Concept Index

A

A (asinsert flag) ...l 13
ALL keyword ..o 35
ambiguous name...........o i 29
ArGUINENT . ..ottt 5
atom 4

B

B (asinsert flag)l 13
brackets, literal, 17, 26
branch i 35

C

call (of macro).o 5
callby name............ ... it 21
CapPaCIty .. 8, 44
case (of characters)coiiiiiiiin.. 4
causes of error. 68
character Set...........ooiiiiiiiii i, 4
character variable............. o 10
clashing names oo 30
closing delimiter.............. L. 5
consequences of evaluation..................... 34
construction........... 19
construction, global............................ 27
construction, local 27
current environment 21, 32
current point of scan..................oiiia.. 21

D

D (asinsert flag) ... 13
delimiter name oL 32
delimiter option (on skip)...................... 15
delimiter structure, specifying.................. 32
delimiter, closing o il 5
delimiter, exclusiveo . 23
delimiter, name.......... ... oo i i 5
delimiter, optional 7
delimiter, repeated............ oL 7
delimiter, secondary 5

E

environmentooiiiiiiiiii 4,19
environment, current............ 21, 32
environment, NAMEoovviteeeeeeeeeennnn. 19
EITOT INESSAZES .+ v v v vvvvvtteteeeeeenees 62
errors in structure representations.............. 38
EITOTS, CAUSES -« v v v e ve e eeee e e ee e eneanennnns 68
evaluation i i 4,21

evaluation, consequences....................... 34

86
examples of inserts i 14
examples of macros............... o 6
exclusive delimiter.............. 23
expression (IMacro)oeevieieenenn.. 11
F
flag, insert............. i 13
freemode ... 17
function, system o oo 26
global construction 27
global name environment 28
I
initial environment............ oL 27, 28
insert........... o i il 9, 42
insert flag i 13
insert name.oooiiiiiiii 13
insert, protected i 29
insert, unprotected i 29
inserted text....... ... 13
inserts, examples 14
K
keywordc. i 33, 50
keyword ALL 35
keyword OPT o i 35
keyword OR....... ... 35
keyword WITH 35
keyword WITHS 35
L
label.o 12, 59
layout character il 33
layout keyword oL 33, 50
list, option ...t 35
literal brackets................ 17, 26
local construction............. ... oo oL 27
local name environment........................ 28
M
IMACTO. .« ettt ittt 5, 44
macro call ... 5
macro element........... oo il 12
MACTO €XPIeSSION . ..ottt 11
macro label 12, 59

Concept Index

TNACTO NAINIE .« . et vttt ettt e e e e e e e 5
macro, NOrmal-scanc.c.oouuueeennnnee... 8
macro, operation................. 26, 32
macro, straight-scan 8
macro, substitution.............. ... oo 26
macro-time statement............ ... oo 9
macro-time variable.......... ool 9
macros, examples.......... ..o 6
marker, stop..........o i 18
marker, warning ool 17
matched option (on skip)................... 15, 16
matched skip............ i i 16

N

NO (node zero)coouiiiiiiiiiiaia.. 36
name (MACTO)ourrtii e, 5
nameclash 30
name delimiter 5
name environment, 19
NEC IMACTO . . ottt ettt e ie e ie e e i 27
NEStING . oo 21
NOAE . oot 35
nodeflag.......... ... i 36
NOAE ZETO. ..ottt i 36
normal-scan Macro.ovviiieeeeeineeenn. 8
notation............. i 2

@)

operation Macrooeeeeiiuueeen... 26, 32
OPT keywordt 35
option listo i 35
optional delimiter.............. 7
OR keyword.........o L. 35
output text....... .o 5
overflow 12

P

permanent variable..........o ool 9
point of scan, current 21
PLOCESS « ottt ettt et 5
protected insert............. 29
punctuation character 4

TAIIZE « v 12, 61
TECULSION .« . v vvv ettt eeees 21
repeated delimiter L 7
replacement text......... ... o oo 5

S

scan, current point of 21

87
scanned text.......... ... ool 4, 21
SCANNING. ...ttt 21
secondary delimiter................ 5
SKID v 15, 43
skipnamecooiiiiiiiiiii i 15
skipoptions............ .. L 15
skip, matchedol 16
skip, straighto i 16
source text 5
space character (use of)........................ 69
startline......... ... o o i 24
statement, macro-time................. 9
stopmarker i 18
straight skip......... 16
straight-scan macro............., 8
structure representation.................... 32, 36
structure representations, errors in............. 38
subroutine. 8
SUDSCIIPE « v v 11
substitution macro............ ... il 26
SUCCESSOT .+« v e v vttt et et e e et eaeieee 7
system function..............ol 26
system variable....... o ool 9
T
temporary variableo o oo 9
text option (on sKip)............o.oiiat. 15, 16
text, scanned oo i il 4
text, value. ... 4
U
unmatched construction 22
unprotected insert........... o oL 29
\%
value text ... 4
variable, character............. 10
variable, macro-time............... oL 9
variable, permanent............... oL 9
variable, system ... 9
variable, temporary.......... oL 9
\%%
WA (as insert flag)o 13
warning marker........ o o oo 17
Wwarning mode 17
WB (as insert flag) oL 13
WD (as insert flag) ... 13
WITH keyword........ i 35
WITHS keyword ...t 35

	ML/I User's Manual --- Sixth Edition
	Introduction
	General description
	Organisation of this manual
	Notation for describing syntax
	Further points of notation
	Improving ML/I

	The environment and its constituents
	Basic action of ML/I
	Character set
	Text
	Macros and delimiter structures
	Examples of macros
	Delimiter structures
	Optional and repeated delimiters
	Macro definitions
	The difference between macros and subroutines
	Impossible replacements

	Introduction to macro-time variables and statements
	Inserts
	Macro-time variables
	Initialisation of macro variables
	Subscripts and macro expressions
	Character variables
	Integer overflow
	Macro labels
	Macro elements
	Insert definitions
	Examples of inserts

	Skips
	Matched skips and straight skips
	Literal brackets
	Example of a matched skip
	Warning markers
	Stop markers

	Summary of the environment
	Normal-scan macros and straight-scan macros *
	Name environment used for examples

	Text scanning and evaluation
	Nesting and recursion
	Call by name
	Details of the scanning process
	The method of searching for delimiters
	Exclusive delimiters *
	Startlines *
	Dynamically generated constructions *

	Operation macros and their use
	Operation macros
	Use of literal brackets for surrounding operation macro arguments
	NEC macros
	Dynamic aspects of the environment *
	Protected and unprotected inserts *
	Ambiguous use of names *
	Implications of rules for name clashes *

	Specification of individual operation macros
	Specification of delimiter structures
	Keywords
	The consequences of evaluation
	Introduction to more complicated cases *
	Full syntax of structure representations *
	Examples of complex structure representations *
	Possible errors in structure representations

	The NEC macros
	MCWARN
	MCINS
	MCSKIP
	MCDEF
	MCNOWARN, MCNOINS, MCNOSKIP and MCNODEF
	MCWARNG, MCINSG, MCSKIPG and MCDEFG
	MCSTOP
	MCALTER

	System functions
	MCLENG
	MCSUB

	Further operation macros
	MCSET
	MCNOTE
	MCGO
	MCPVAR
	MCCVAR

	Error messages
	Example of an error message
	Notes on context print-outs
	Count of errors
	Complete list of messages
	Illegal macro element
	Arithmetic overflow
	Illegal input character
	Illegal macro name
	Unmatched construction
	Illegal syntax of argument value
	Redefined label
	Undefined label
	Storage exhausted
	System error
	Subsidiary message
	Statistics
	Version number and current constructions
	Implementation-defined messages

	Hints on using ML/I
	How to set up the environment
	Possible sources of error
	Jumping over expanded code
	Generation of unique labels
	Lower case letters
	Use of newlines in definitions
	Use of redundant spaces

	Simple techniques
	Interchanging two names
	Removing optional debugging statements
	Inserting extra debugging statements
	Deleting a macro
	Differentiating special-purpose registers and storage locations
	Testing for macro calls
	Searching
	Bracketing within macro expressions
	Deletion from source text only
	Locating missing delimiters
	Handling line-oriented input

	Sophisticated techniques *
	Macro-time loop
	Examining optional delimiters
	Dynamically constructed calls
	Arithmetic expression macro
	Formal parameter names
	Intercepting changes of state
	Remembering code for subsequent insertion
	Constructions with restricted scopes
	Optimising macro-generated code
	Macro to create a macro

	Use of system variables
	System variable overview
	Use of S1 to S9

	Operation Macro Index
	Concept Index

