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Preface 1

Preface

This is the complete dissertation, apart from the two Appendices (see below). The following
points should be noted:

a.

b.

The whole dissertation has been converted to Texinfo format. This has necessitated
changing the Appendices from “I and II” to “A and B”.

Part T was published in Annual Review in Automatic Programming, Volume 6, Perga-
mon Press, 1968.

Each of the three Parts is self-contained and can be read independently of the other
two. A knowledge of ML/I as summarised in the paper “The ML/I Macro Processor”
[Comm. ACM 10, 10 (Oct. 1967), 618-623] is assumed in Part II. The above paper
described the main principles of ML/I and may be looked upon as a precis of Appendix
B.

The contents of Part III are also summarised in a published paper, which is entitled
“Using a macro processor to aid software implementation”, [Computer J. 12, 4 (Nov.
1969) 327-331].

There have been two different versions of the Bibliography. These have been combined,
and numbered references in the text have been adjusted accordingly.

The Appendices are separate documents. Both of them have been updated at least
twice, and the originals are no longer easily available.
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Overall Introduction

Summary

The main research for this dissertation has consisted of designing and implementing a macro
processor, which I have called ML/I, and in using it to generate versions of itself for several
computers. A description of ML/I has been published [Comm. ACM 10, 10 (Oct. 1967),
618-623).

This dissertation consists of three Parts and two large Appendices.

Part I is a survey of existing macro processors, including ML/I, with an evaluation of
some of their uses, their achievements and their failings. The survey introduces the four
main application areas for macro processors, which are considered to be language exten-
sion, language translation, text generation, and systematic editing and searching. It then
considers the design factors that make macro processors fundamentally different from one
another. These design factors are: relationship with base language, syntax, text evaluation,
macro-time facilities and implementation methods. The bulk of the survey (Chapter 2,
Chapter 3, Chapter 4, Chapter 5 and Chapter 6) is devoted to considering these design
factors in turn. The last Chapter, Chapter 7, reviews the four application areas in the light
of what has been said in the preceding Chapters.

Part II is a short critique of ML/I. It is a general discussion rather than a very detailed
one. A complete description of ML/I is given as Appendix A.

Part I1T introduces the idea of a DLIMP. This is a means whereby machine-independent
software can be implemented by describing it in a special-purpose language and then using
a macro processor to map this language into any desired object language, in particular into
the assembly language of any desired machine. The implementation of ML/I itself by means
of a DLIMP is described and results for several implementations are presented. Full details
of how to implement ML/I by this method are given in Appendix B. The object of Part III
is to show that a DLIMP can be a very good method of software implementation and that
ML/I is an especially suitable vehicle for performing a DLIMP.

Acknowledgements

I would like to thank Professor M.V. Wilkes, who was my supervisor during the first and
third years of my research, and Professor D.W. Barron who was my supervisor during the
second year. I would like to thank John Nicholls and other members of the staff of IBM
(UK) Laboratories for useful discussions and for arranging the typing of the draft of Part
I. T would also like to thank the people who helped with the various implementations of
ML/I. Full acknowledgements to these people are given in Chapter 12. Finally I would like
to thank the Science Research Council for the financial support of my work.

Originality

No survey of macro processors nor any analysis of the basic principles in the design of macro
processors has ever been published before. Part I of this dissertation is intended to fill this
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gap. Chapter 3 and Chapter 4, in particular, contain new insights into the design of macro
processors.

ML/I, like any new piece of software, contains many facilities that have been in use
before. However, its most central characteristic is original. The degree to which ML/T is
original and the extent to which it has taken ideas from other macro processors is discussed
at more length in Chapter 8.

The idea of a DLIMP as presented in Part III is not new, though no analysis of its
virtues as a general method for software implementation has been published previously.
The implementing of ML/I by means of a DLIMP is new in the following ways:

a. It is a much more elaborate operation than the only previously published account of a
DLIMP.

b. New techniques such as statement prefixes and constant-defining macros have been
introduced.

c. The same descriptive language has been mapped into both a high-level language and
an assembly language.

d. Detailed results of a DLIMP have never been published before but the results quoted
in this dissertation are thought to set a high standard of efficiency.

I hereby declare that this dissertation is not substantially the same as any that I have
submitted for a degree or diploma or other qualification at any other University. I further
state that no part of my dissertation has already or is being currently submitted for any
such degree, diploma or other qualification.

University Mathematical Laboratory
Cambridge, England.

March 1968.
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1 Introduction

Macro processors have recently received a considerable amount of attention. It is the pur-
pose of this discussion to try to evaluate the uses and the limitations of macro processors
and to consider the essential features of the design and, to some extent, the implementation
of a macro processor with special reference to those macro processors that have already
been implemented or proposed.

The first problem that arises in a discussion such as this is the problem of notation and
terminology. Terminology for macros is even more variable than most terminology in com-
puting. For example “replacement text” in one terminology is equivalent in various other
terminologies to “macro definition”, “macro skeleton”, “defining string”, “macro body”,
and “code body”. In order to avoid confusion, a fixed terminology and notation will be
used throughout this discussion. This terminology, which should be self-explanatory, is the
terminology used in the literature describing ML/I [4, 5]. (It is not claimed that this termi-
nology is “better” than any other; it is simply that if one is forced to adopt one terminology
it is most natural to adopt the same terminology as one has used in previous papers.)

1.1 What is a Macro Processor?

A very wide range of pieces of software have been described as macro processors and it is
not possible to draw exact boundary lines which determine what is a macro processor and
what is not. In particular most processors for symbol manipulation languages can be used
to some extent as macro processors and vice versa. Thus any definition of macro processor
must, of necessity, be somewhat unsatisfactory.

Two dictionaries of computer terms [26, 37] define macros only in terms of their use
with assembly languages, but nowadays macros are regarded in much more general terms.

For the purpose of this discussion a macro processor will be defined as “a piece of
software designed to allow the user to add new facilities of his own design to an existing
piece of software”.

1.2 Why “Macro Processor” rather than “Macro
Language”?

It is much more usual in computing to assign a name to a language rather than to the
pseudo-machine that executes programs in the language. Thus one speaks of languages
when using the terms ALGOL, FORTRAN, etc. When dealing with macros, however, it is
normal to adopt the opposite approach and apply the name to the macro processor rather
than to the macro language. Examples are XPOP, LIMP, GPM, ML/I. Macro processors
do, of course, have associated macro languages. These languages determine the syntax of
macro calls, macro definitions, etc. However, since the input to a macro processor does not
normally consist purely of statements in the macro language but rather of statements in
the macro language interspersed with sections of text which have no meaning to the macro
processor, it is usually more convenient to describe the effect of macros in terms of the
actions of a processor rather than the semantics of a language.
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1.3 Uses of Macro Processors

It is not possible to separate the uses of macro processors into watertight compartments,
but the following are the four main application areas:

a. Language extension.
b. Language translation.
c. Text generation.

d. Systematic editing.

In cases a) and b), the language is normally an artificial language rather than a natural
language. These areas will be discussed in more detail later.

Clearly some applications of macro processors overlap the above areas and a few ap-
plications might be considered not to fall into any of the four areas. However, it is still
felt that these four application areas are sufficiently comprehensive for a general discussion
such as this.

1.4 Organisation of this Discussion

The sections which follow discuss in more detail these four application areas, and consider
the jobs in these areas that could usefully be performed by macro processors. This part
of the discussion may be considered as setting some design goals. However, a single macro
processor can hardly be expected to achieve all these goals, and a macro processor cannot
necessarily be considered as inferior if it has been designed with only a limited number of
these goals in mind.

After the four application areas have been considered, the rest of this Chapter will
be devoted to introducing the main factors that go into the design of a macro processor.
These design factors do not correspond in any fixed way to the application areas, and the
capabilities of a macro processor in each area will normally depend on a variety of these
factors.

In Chapter 2, Chapter 3, Chapter 4, Chapter 5 and Chapter 6, each design factor will
be considered in more detail. In each case general considerations affecting the choice of
design will be discussed and the designs used in various individual macro processors will be
considered.

Chapter 7 will sum up the preceding material. Each of the four application areas will
be re-considered, and the capabilities and limitations of existing and hypothetical macro
processors will be evaluated.

1.5 Language Extension

The most basic application of any macro processor is in allowing the user to extend an
existing programming language to make it more suitable for his particular application.
This includes the familiar use of a macro processor in providing a shorthand notation, i.e.
in allowing the user to write a short sequence of characters in place of a long sequence that
occurs extensively in his application. Ideally the user should be able to extend any syntactic
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class of a language by macro replacement, but in practice it is often only possible to add
new statements and not to extend other syntactic classes.

Another goal in this field is that the macro processor should be easy to use, and it
should be possible for the run-of-the-mill programmer to make full use of its facilities.

1.6 Language Translation

Given a language A and a language B, together with some rules for translating from A to
B, then an application for a macro processor might be to translate from A to B. Clearly
this goal can only be realized in a limited number of cases. In particular, macros are not
suitable for translating between natural languages, since this area requires very specialised
techniques. However, taking A to be a high-level programming language and B to be the
assembly language for some machine, then it might be possible for a macro processor to
perform the compilation from A to B.

1.7 Text Generation

A macro processor should be useful to a user who wishes to write “a program to generate a
program”, or, more generally, a program to generate any piece of text. Applications in this
area are:

a. Conditional generation. For example a macro processor might be used to provide the
optional inclusion within a program of statements required only during the debugging
stages of that program.

b. Repetitive generation. A macro processor should be useful for the generation of repeti-
tive text, particularly of repetitive text involving some numerical sequence. Examples
are a series of data constants representing the powers of 2 or the initial value for an
array where the numbers involved follow some pattern.

c. Program parameterisation. An alternative name for this application would be “delayed
binding”. As an example, assume a programming language requires array bounds
to be constants. Then it might be convenient to delay the binding of array bounds
until compile time by using variables for array bounds and using a macro processor to
substitute values for these variables.

d. Report generation. A macro processor cannot hope to match the power of a special-
purpose report generator. However, it might be used in a limited way. For example,
one of the intended uses of TRAC [35] is as an aid to stenographers.

e. Library facilities. An auxiliary function of a macro processor might be to communicate
with a library of (pieces of) programs and data.

1.8 Systematic Editing and Searching

A macro processor may be very useful for making systematic corrections to programs. The
simplest example of this is the replacement of one variable name by another. Another
example would arise if an ALGOL-oriented programmer, when writing in PL/I, omitted
semicolons from all his DO statements. A macro processor might well be able to correct
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this error. However, macro processors are not basically suitable for making non-systematic
corrections to programs, for example the correction of logical errors or of isolated syntactic
errors.

In addition a macro processor might be used to search a program for some given
construction, say a certain type of statement or a certain variable, and to point out all
occurrences of this construction. Applications in editing and searching arise not only when
dealing with programs but with any kind of text.

1.9 Introduction to the Design of a Macro Processor

The fundamental facilities offered in every macro processor are the same. Each macro
processor involves the concept of a macro call, which is used to identify the fact that a
certain piece of replacement text is to be inserted. The macro call has arguments and there
are facilities for specifying where the arguments are to be inserted into the replacement
text. In addition every macro processor has the facility for the user to write “macro-time”
instructions, i.e. instructions that are executed during macro processing.

However, this is not to say that all macro processors are much the same. There is,
in fact, an immense difference in the power and range of application of different macro
processors, and the purpose of this Chapter is to introduce the areas of design where macro
processors fundamentally differ.

A good starting point in a discussion of the design of macro processors is a classic
paper by Mcllroy [32], published in 1960, which introduced a large number of previously
unpublished ideas, arising from a variety of sources. Before Mcllroy’s paper, the published
material on macro processors consisted mainly of descriptions of simple macro assemblers,
all of which were much the same. Mcllroy considerably broadened the horizons. He proposed
that the syntax of macro calls should not be as rigid as in the conventional macro assembler,
that all text should be treated in a uniform manner, and that there should be a wide
range of macro-time statements. This represents contributions in three basic areas, namely
syntax, text evaluation, and macro-time facilities. He also mentioned that the use of macro
processors is not confined to assembly languages but can be applied to other languages as
well. This introduces a fourth consideration, namely the language into which the macro
processor maps, which is called the base language.

Adding implementation methods as the last area of consideration, this makes up the five
factors which are fundamental to the design of a macro processor. These design factors will
be considered in turn in the following Chapters. They will be considered in the following
order: base language; syntax; text evaluation; macro-time facilities; and implementation
methods.
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2 Base Language

A macro processor may only be applicable to a single base language, in which case it will be
called special purpose, or it may be applicable to a wide range of base languages or even to
any base language, in which case it will be called general purpose. An example of a special-
purpose macro processor is Macro FAP [25], while an example of a general-purpose macro
processor is GPM [38], as its name implies. Obviously a special-purpose macro processor,
within its limited field of application, is normally easier to use and perhaps more powerful
than a general-purpose macro processor. Some examples of how special-purpose macro
processors take advantage of their base language dependence will be considered later.

In addition to macro processors that require a particular language to be the base
language, there exist macro processors that depend on the base language being implemented
in a special way. This subject is discussed by Cheatham [6]. In the case where the base
language is a high-level programming language, Cheatham distinguishes three classes of
macro as follows:

a. Text macros. These are macros implemented by a preprocessor to the compiler for the
base language. Outside of macro calls little or no syntactic analysis of the source text
is performed.

b. Syntactic macros. These are macros called during the syntactic analysis stage of a
compiler. The syntax of the entire source text is analysed. In defining syntactic macros
the user makes use of the syntactic classes built into the base language.

c. Computation macros. These are macros called during the stages of the compiler where
machine code or some intermediate code is being generated.

Syntactic and computation macros, which are considered in more detail later, will be called
compiler-dependent since they cannot be attached to an arbitrary compiler. Instead the
compiler has to be designed around the macro processor.

If the macro processors that form part of macro-assemblers are examined to find
whether they are compiler-dependent (or, more exactly, assembler-dependent) then most
of them are not, since normally the macro processor is logically a preprocessor to the as-
sembler and no syntactic analysis is performed in parts of the source text not involving
macro replacement. However, two pieces of software that qualify as macro-assemblers,
namely Lampson’s IMP [28] and Ferguson’s meta-assembler [11], are compiler-dependent
since their design is such that macro processing and assembly must be simultaneous, with
considerable interaction between the two.

In the discussion that follows, a macro processor that deals with text macros only will
be called a text macro processor, and similarly for the two other types of macro.

2.1 Syntactic Macros

Syntactic macros are macros that are expanded during the syntactic analysis of the source
text. Syntactic macros normally map into text in the base language in the same way
as text macros. Existing schemes for syntactic macros require that the compiler for the
base language should be syntax-directed. The macro facility is to some extent a natural
extension of the syntax-directed compiler. Syntax-directed compilers as such, however,



Chapter 2: Base Language

cannot be considered to be syntactic macro processors since, though compilers generated
by them can be modified more easily than conventional compilers, the person performing
the modification usually needs to get at the syntax tables (and the associated semantics) of
the compiler that he wants to modify and to know a good deal about how these tables are
designed and how entries are interrelated. This kind of operation comes into the category
of modification by patching rather than modification by macro replacement, though it must
be admitted that it sometimes becomes difficult to draw a dividing line between the two.
However, some syntax-directed compilers, the Compiler Compiler [3] for example, do permit
a certain amount of modification to be made without resort to patching.

A feature of syntactic macros is that the user can specify the syntax of the entire macro
call, including its arguments. A notation such as Backus Normal Form is normally used.

Cheatham proposes two different classes of syntactic macros, called SMACROs and
MACROs. Each SMACRO is associated with a given syntactic class of the base language,
and calls of the SMACRO are only recognised in a context where that syntactic class may
occur. SMACROs behave as if they had been built into the original syntax of the base
language and their syntax can be chosen to fit in neatly with the syntax of the rest of the
base language. This compares favourably with macros which require some special marker
to announce their occurrence and/or require a special syntax for macro calls, which might
clash with that of the base language.

Cheatham supplies the following example of an SMACRO in his paper:

LET N BE INTEGER

SMACRO MATRIX(N) AS ATTRIBUTE

MEANS ‘ARRAY(1:N, 1:N)’
where ATTRIBUTE is a previously defined syntactic class of the base language. This
definition specifies that if text of form

MATRIX (argument)

occurs in a context of the base language where an ATTRIBUTE is to be expected, then the
macro processor is to check that the argument is an integer and replace the original text by

ARRAY (1:argument, 1:argument)

Cheatham’s MACROs differ from his SMACROs in that they do not have to form a syntactic
class of the base language and can occur anywhere in the source text. They do, however,
have to be preceded by a special marker. MACROs are, therefore, similar in many ways
to some existing schemes for text macros. However, the advantage of MACROs is that the
syntax of their arguments is specified and hence, in the case of an error in the form of an
argument, a message can be produced when the macro is called. In the case of text macros
it is often the case that error messages are produced in a stage of compilation after macro
processing has been completed, and it may be difficult to relate an error message with the
macro call that produced it.

Unfortunately no syntactic macro processors have yet been fully implemented, so it is
rather difficult to judge their capabilities. In addition to Cheatham [6], Galler and Perlis [14]
and Leavenworth[29] have also produced proposals. Leavenworth’s scheme, like Cheatham’s,
is independent of the base language, except that it must be possible to analyse the syntax
of the base language by syntax-directed techniques.

In theory any syntactic macro processor could be made compiler-independent by mak-
ing it a preprocessor rather than part of a compiler. In this case, the compiler, being
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independent of the macro processor, need not be implemented by syntax-directed tech-
niques. Indeed, the macro processor could be an afterthought to the compiler rather than
an integral part of its design. However, in practice it would be excessively slow to analyse
the syntax of the source text twice, and it is unlikely that a piece of software as elaborate
as a syntactic macro processor would be written simply to serve as a preprocessor to an
existing compiler.

To conclude the discussion of syntactic macros it can be said that, as far as can be
judged at this time, they are powerful but difficult to use and to implement. In fact both
Cheatham and Galler make the point of saying that syntactic macros would be a tool for
the systems programmer rather than the run-of-the-mill user. Although syntactic macros
and text macros have overlapping fields of application, they should be regarded as partners
rather than competitors.

2.2 Computation Macros

Computation macros are macros which are called during intermediate stages of compilation
and which are replaced by the particular form of machine code or pseudo-code used by
the compiler concerned. This code can be specified explicitly by the user or it can be pre-
compiled from some higher-level form specified by the user. Cheatham describes the second
method, but most existing schemes for computation macros use the first, MAD [1] being a
good example. In the MAD compiler for the IBM 7090 new operators and data types can
be defined by adding sections of machine code to a table used by the compiler.

Computation macros are highly specialised, being dependent on the base language,
the method of compilation, and probably on the object machine. It is hard to make any
general statements about them beyond saying that some individual schemes have proved
very useful.

Due to their highly specialised nature, computation macros are not considered in the
rest of this discussion, and henceforth the word “macro” can be taken to mean either “text
macro” or “syntactic macro”.

2.3 Difficulties in Categorising Compiler-Dependent Macros

One of the problems with compiler-dependent macros is that it becomes very hard to dis-
tinguish what is a macro and what is not. For instance a facility to define new operators in
a language might be called a macro facility. However, all high-level languages allow the user
to define his own operators by writing function definitions, and functions are not regarded
as a macro facility.

In this discussion a facility will only be regarded as a macro if it is of form “Replace X
by Y” where X and Y are, within certain limits, defined by the user. With this definition,
certain built-in facilities of high-level languages still qualify as macro facilities, for example
the DEFINED facility in PL/T [24].

The thinness of the dividing line between macro facilities and non-macro facilities is
well illustrated by a study of a language called GPL [15]. The letters stand for “General
Purpose Language”, and it has been designed as a language that any user can modify to
fit his own special needs. GPL allows the user to define new functions, infix operators,
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and data types. These functions and infix operators may be polymorphic (i.e. applicable to
many data types), and existing polymorphic operators may be extended to cater for new
data types. Functions and operators may either be replaced by in-line code defined by the
user, in which case the compiler for GPL acts as a macro processor, or by a function call
inserted by the compiler, in which case no macro activity is involved.

2.4 Advantages of Base Language Dependence

The purpose of this section is to see what can be gained from attaching a macro processor
to a single base language.

Several different special-purpose macro processors will be discussed, each of which takes
advantage of its base language dependence in a different way.

The System/360 Macro-Assembler [23], the macro processor for which is described by
Freeman [13], is a good example of a powerful macro-assembler. The macro processor acts
as a two-pass preprocessor to the assembler. The first pass builds up a dictionary of all the
assembly language variables and their attributes. (It also collects all the macro definitions,
but this is not a feature of its base language dependence.) Macro replacement is performed
on the second pass. Within the replacement text of a macro the attributes of variables
appearing as its arguments may be examined and code generated accordingly. This facility
adds considerable power to the macro processor. It is an example of a more general concept,
called context-dependent replacement, which will be discussed later.

A different example of a macro-assembler exploiting its base language dependence is
illustrated by the IMP system described by Lampson. In IMP the macro processor and
assembler operate simultaneously, both using the same dictionary. The assembler is one-
pass, and the loader deals with the problem of forward references. There is no difference
between macro variables and assembly language variables. The EQU statement, familiar in
many assemblers, acts as a macro-time assignment statement, and the value of a variable
may be redefined any number of times using this statement. The occurrence of a variable
name in the label field of an instruction causes the current value of the location counter to
be assigned to the variable in the normal way. When the name of a variable occurs as part
of an execution-time instruction, the current value of the variable is substituted in its place.

The macro processor for PL/I [24] uses its base language dependence in an interesting
way. Here, following a view expressed in Mcllroy’s paper, the macro-time statements have
been designed to have the same syntax as the corresponding statements in the base language.
This saves the user the bother of learning two different syntaxes. However, the result is not
an unqualified success, since as a consequence of this philosophy, the PL/I macro processor
has unnecessarily powerful arithmetic facilities and poor replacement facilities. For example,
since macro calls have the same form as PL/I procedure calls, each macro must have a fixed
number of arguments. This is a severe restriction. The basic flaw in this philosophy seems
to be that the facilities desirable in a macro processor do not correspond closely with those
desirable in a high-level language.

The PL/I scheme can be generalised by allowing a compiler to make two (or more)
passes through itself. On the first pass the macro-time statements in the source text would
be compiled. These statements would then be executed and the resultant value of variables
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and functions would be inserted dynamically into the pieces of text separating the macro-
time statements in the same way as in the PL/I scheme. This text, as modified, could then
be fed back as input to the compiler. This approach allows all the base language facilities
to be available at macro-time, and is economical to implement in that the same piece of
software is used to compile both the macro-time statements and the final base language
statements.

Leroy’s [30] proposed macro facilities for ALGOL are similar to those in PL/I, though
Leroy goes further than PL/I by allowing macro-time subscripting and expression evaluation
within base language statements. Leroy analyses the complete syntax of the source text, and
only allows macro-time statements to appear where base language statements can appear.
Similar restrictions apply to other syntactic classes.

Leroy’s scheme is, in fact, somewhere between a text macro processor and a syntactic
macro processor. The syntax of the entire source text is analysed but this is mainly for
checking purposes and the user has no control of the syntax of macro facilities.

Meta-assemblers, which may be regarded as a special class of macro processor, should
also be mentioned at this point. Descriptions of meta-assemblers have been published
by Ferguson [11] and by Graham and Ingerman [16]. A meta-assembler is a generalised
assembler where the formats of the instructions in the assembly language are defined by the
user. These “formats” can be regarded as macros with many alternative names. The base
language into which these macros map is either absolute machine code or code for a loader.
Each macro has, within its replacement text, output statements to generate the code to
replace it. When a macro has alternative names each name is replaced by a number defined
by the user. This number will normally be the numerical code for the machine instruction
represented by the macro.
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3 Syntax

There are three primary syntactic considerations in the design of macro processors. These
are:

a. The syntax of macro calls.

b. The way in which formal parameters are specified within the replacement text of a
macro.

¢. The syntax of macro-time statements.

A macro is, in general, defined once and called thousands or even millions of times. Hence
syntactic considerations that only apply to the defining of a macro and the specification of
its replacement are relatively unimportant. Of the three considerations above, the syntax
of macro calls is far and away the most important. As well as affecting the convenience of
use of a macro processor, the syntax of macro calls, as will be seen, can determine its power
and range of application. On the other hand, considerations b) and c) above are largely a
matter of personal taste and hence do not merit much general consideration.

3.1 Syntax of Macro Calls

The syntax of macro calls involves, in general, choosing symbols to indicate the beginning
and end of the call and to separate the arguments. In this discussion the word symbol will
be taken to mean any predefined sequence of characters (or, in a context where text is not
treated in units of characters, any predefined sequence of text units), and it will be assumed
that the character “newline” occurs at the end of each line of text. “Newline” and similar
characters indicating the layout of text will be called control characters and other characters
will be called explicit characters, since these latter will have been explicitly written by the
programmer.

The syntax of a macro call must be chosen so that:
a. The call can be recognised as such.

b. The arguments (if any) of the call can be recognised and separated from one another.

These two considerations can reasonably be separated from one another and hence will be
considered separately.

3.2 Recognition of Macro Calls

This section will describe how macro calls can be recognised in the source text. As has been
said, the syntax of replacement text is relatively unimportant, and this applies equally to
the recognition of macro calls within replacement text. The same recognition method may
be used as in the source text or special rules may be made as to the format of replacement
text so that macro calls can be recognised more easily. It is quite acceptable to have rigid
rules on the form of replacement text but much less acceptable to have such rules governing
the form of source text.

The first point to be considered with respect to the recognition of macro calls is the
scope of the search. General-purpose macro processors scan the entire source text looking
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for macro calls, though there is normally a facility for specifying that certain strings are to
be treated literally (see “Skips” in Chapter 4). On the other hand, special-purpose macro
processors might only search for macros in particular contexts in the base language. For
example, a macro-assembler might only recognise a macro name in the operation field of an
instruction, and Cheatham’s SMACROs are only recognised in a specified syntactic class of
the base language.

The second and more important point is the recognition method. The source text will,
in general, consist partly of text to be copied and partly of macro calls, i.e. text to be
replaced. The macro processor must be able to recognise these macro calls and separate
them from the text surrounding them. This involves determining the following information
about each macro:

a. The start.
b. The end.

c. The macro to be called.

A macro processor knows it has encountered a macro call when it has ascertained one
of the three above pieces of information, and from this deduces the two other pieces of
information. The interrelation between these pieces of information determines the character
of the recognition method. The recognition methods used by various macro processors are
discussed below in the light of this. However, before these methods are discussed it is
necessary to consider briefly how a macro can be identified.

There are basically two ways of identifying the macro to be called. These will be
called name recognition and pattern matching. In the name-recognition method a macro is
identified by a unique symbol associated with the macro. This symbol is called the macro
name. In the pattern-matching method, each macro has associated with it a pattern,
which consists of a sequence of fixed strings interspersed with strings which, within certain
limits, are arbitrary. A macro is identified by the occurrence of its pattern. There may be
elaborate rules, as in LIMP [39], for identifying the macro if a macro call matches more
than one pattern. The various recognition methods are now considered.

3.3 Recognition of Start First

In many macro processors the processor is told when it has reached the start of a macro call
by the occurrence of a predefined symbol, the same symbol being used for all macro calls.
This symbol will be called a warning marker. Examples of macro processors which use
warning markers are GPM, TRAC, Cheatham’s MACRO facility, and, if it is in “warning
mode”, ML/I. In all these cases except the MACRO facility, the macro is subsequently
identified by the name recognition method, and the macro name must follow immediately
after the warning marker.

Once the start of a macro call has been identified, the end and the macro to be called
can be decided in either order. ML/I identifies the macro first and, as will be discussed later,
this determines the syntax of the rest of the call, including where the end is. GPM is to
some extent the opposite as instead of giving freedom in the choice of symbol to delimit the
end of a call, it uses a fixed universal symbol (the semicolon) for this purpose but gives more
freedom in specification of the macro name. In GPM the macro name is given by the text
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from the warning marker up to the next comma or semicolon. This text may contain macro
calls and hence the macro name can be constructed dynamically during macro processing.
This is a very useful facility.

3.4 Macro Identification First

In many macro processors the macro processor does not know it has a call on its hands until
it has identified the macro to be called. As has been said, a macro may be recognised by
its name or by a pattern. If a macro is recognised by its name it is necessary in practice to
place some limitation on the recognition process otherwise the user would find many pieces
of text taken as macro calls when they were not intended as such. The two most common
methods of limitation are:

a. Restricted scope. This is the method adopted by most macro-assemblers, which only
recognise macro names in the operation field of the instruction.

b. Larger text units. The PL/I macro processor and ML/I do not scan text character by
character but rather in larger units called tokens or atoms. In each case an identifier is
treated as a single unit rather than as a sequence of individual characters. Thus if DO
were a macro name it would not be recognised as such in an identifier such as DOG
or RANDOM. (ML/T is mentioned in this section as well as the last since it has two
modes of working, “warning mode” and “free mode”. The mode of working determines
the recognition method.)

Similarly, if a macro is recognised by a pattern-matching process it is usual to make some
limitation on the recognition process. In the case of pattern matching, recognition would
be incredibly slow if every sequence of characters in the source text had to be compared
with every pattern. Thus one of the two following limitations is made in practice:

a. Restricted scope. This is the method used in Cheatham’s SMACRO proposal, and the
proposal for syntactic macros by Galler and Perlis.

b. Fized start and end. In LIMP, WISP [40], and SYGMA [10] each pattern must begin
and end with fixed characters. In LIMP and WISP patterns must occupy exactly one
line of text. This is equivalent to tacking the character newline onto the beginning and
end of each pattern. SYGMA, on the other hand, requires that patterns be enclosed
in parentheses.

Once the macro has been identified it is necessary to find the beginning and end of its
call. This presents no problem if the macro is identified by the pattern-matching method
since the recognition of a pattern automatically determines the beginning and end. The
beginning and end may be predefined symbols, or, in the case of syntactic macro processors,
they may be determined by the syntactic analysis of the source text surrounding the macro
call. In the proposal of Galler and Perlis, the new operators that can arise within macro
calls are given a priority relative to other operators and this determines the boundaries of
macro calls.

If a macro is identified by its name, then it is still necessary to find the beginning and
end of its call.

In ML/T and the PL/I macro processor, the macro name must come at the start of the
call, and hence the start is immediately deduced on recognising the macro name.
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In most macro-assemblers, on the other hand, the start of the call is the “newline” at
the start of the line on which the macro name occurs. XPOP [17, 18] is probably unique
in that, in one mode of operation, the macro name need not precede its arguments but
may occur anywhere in a call. Most other macro-assemblers only allow a label to precede
the macro name, and this label is usually treated by a special mechanism and cannot be
regarded as an argument of the call.

As in the case where macro calls were identified by a warning marker, the symbol
denoting the end of a macro call can be a fixed universal symbol or a symbol dependent
on the macro being called. The latter method, which is clearly more flexible, is used by
XPOP, ML/I, and Leavenworth’s proposed syntactic macro scheme.

Since this latter method of specifying the end of a macro call is so much more flexible,
it is worth considering whether a similar method cannot be applied to specifying the start of
a call since macro processors are rather inflexible in this respect. To take a specific example,
ML/TI gains in flexibility by allowing the user to specify the syntax of the macro call, but all
the syntax specified by the user must follow the macro name. It would be an improvement
if the user could also specify the syntax of a part of the macro call to precede the macro
name. This would allow arguments to precede the macro name, a facility already offered
by XPOP, and, more important, it would allow the symbol starting the macro call to be
dependent on the macro being called, which would be a unique facility for a text macro
processor.

The practical reason why this desirable facility is not offered to the user is, of course,
the problem of implementation. It is much easier if a macro processor only requires forward
scanning and if a backward search of arbitrary length is possible, then the entire source text
must be preserved until macro processing is completed.

There will be more discussion about the merits of the various recognition methods later
in this Chapter.

3.5 End First

In theory it would be possible to design a macro processor which commenced the recognition
process for a macro call by identifying the end of the call. However, this method has no
obvious advantages and it presents some practical difficulties since it is normally easier to
scan text forwards rather than backwards. Moreover, nearly all programming languages
have been designed for forwards scanning, and programmers have become accustomed to
writing in this kind of notation.

3.6 Separation of Arguments

In a syntactic macro processor, the macro processor is tied in with a syntax-directed compiler
and this syntax-directed compiler can be used to analyse the entire piece of text representing
a macro call. Normally the syntax-directed compiler will be sufficiently powerful to allow
the user to choose any notation he pleases for writing a macro call.

Text macro processors are very different, since the syntax of arguments to macro calls
is not usually analysed. Arguments are arbitrary (or almost arbitrary) pieces of text.
Arguments are separated by predefined symbols called separators, and the last argument is
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followed by a symbol called a terminator. Separators and terminators are called delimiters.
In this section the ways in which delimiters can be specified in various different text macro
processors are discussed and compared.

Many macro processors have a very rigid syntax for writing delimiters. There is often
a universal separator, usually a comma, and a universal terminator, and each macro must
have a fixed number of arguments. A notation such as this will be called basic notation.

It is desirable to be able to specify macros with an indeterminately long list of argu-
ments, and basic notation is often extended to allow for this. One way of doing this is to
allow each argument to be a single string or a parenthesised list of strings, separated by
commas. This notation is used, for example, in Macro FAP. In macro processors where this
facility is available, there must, of course, be macro-time statements for iterating through
lists of arguments.

Another useful way to extend basic notation is to allow an argument to be optionally
omitted, and, if this happens, a default value to be assumed. “Keyword parameters” in
the System/360 Macro-Assembler offer this facility. As an example, to illustrate the use
of keyword parameters, assume it was desired to have a macro called INCREASE which
increased the contents of a storage location by a constant. Assume further that it was
desired to assign a default value of one to this constant. To achieve this, a keyword would
be chosen for this constant. Let this keyword be AMOUNT. Then in the declaration of
the INCREASE macro, AMOUNT would be declared as a keyword parameter with default
value one. If it was desired to increase the location XYZ by one, then the call of INCREASE
would be written:

INCREASE XYZ

whereas if it was desired to increase XYZ by a different amount, say two, then the call
would be written:

INCREASE XYZ, AMOUNT = 2

These improvements to basic notation are very desirable, but some macro processors go
further and allow a much more general syntax than basic notation. The idea of allowing
a more general syntax was propounded in Mecllroy’s paper. The schemes that will be
considered in some detail here are those of XPOP, LIMP, and ML/I. In each of these the
user can make up a language of his own by designing suitable macros for his own application
in the notation most suitable for that application.

3.7 XPOP Syntax

Of all macro processors, XPOP is probably the one which allows the most flexibility in the
writing of macro calls. In fact the designer of XPOP, Halpern [20], even claims that the
user of XPOP can get quite close to writing in the English language. In XPOP each macro
can have its own set of symbols for delimiting arguments. The user may define for each of
his macros:

a. A set of symbols, any of which is recognised as a separator.
b. A set of symbols, any of which is recognised as a terminator.

c. A set of symbols, called noise words, which are completely ignored if they occur in a
call of the macro.
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As an example of the notation possible in XPOP, a macro call that in basic notation would
be:

STORE, ALPHA, BETA, GAMMA
could be in XPOP:

STORE INTO CELL ‘‘ALPHA’’ THE LOGICAL SUM ...
FORMED BY OR’ING THE ...
BOOLEAN VARIABLES ‘‘BETA’’ AND ‘‘GAMMA’’.

or any of the wide variety of possible forms derived from permuting the separators and noise
words in the above form.

In a later version of XPOP, a further notational convenience has been introduced. This
is called the QWORD facility and is rather similar to the scheme for keyword parameters
described earlier. However, QWORDs are a device to allow the arguments of a macro to
be written in any order, whereas keyword parameters were used in assigning default values
to arguments.

Although the XPOP user has such considerable freedom in specifying his notation for
writing macro calls, the notation has no meaning. As far as the generation of text to replace
a macro call is concerned, the notation used in writing the call is immaterial, and the effect
is as if basic notation had been used in every case.

A very much simpler and less notationally powerful system that adopts a similar phi-
losophy to XPOP is the macro processor for the Elliott 803 [9]. In this the user can write
any comment between the arguments of macro calls. A typical call might read:

¢‘LO0P’’ FOR (A) := (B) STEP (C) UNTIL (D) DO (E)

3.8 LIMP Syntax

In LIMP, as has been said, macros are identified by the pattern-matching method. Hence
each macro may be regarded as having its own pattern of delimiters. When a macro call is
written, the notation that is used determines which macro is to be called and hence which
piece of replacement text is to be substituted. Thus in LIMP, unlike in XPOP, notation
has a meaning. However, the flexibility of notation in LIMP is much more limited than in
XPOP. In XPOP it is quite easy to design a macro with a large number of alternative forms
of writing its call, whereas in LIMP it would be necessary to enumerate all the possible
patterns, which would be a tedious business.

There is no facility in LIMP for having a macro with an indefinitely long list of argu-
ments, for example a macro of form:

X =41 () A2 (=) ... (=) An
+) (+) (+)
However, this limitation can be got round by the use of LIMP’s powerful string manipulation

facilities or by the use of recursive techniques, though each of these methods would be slow
and somewhat inconvenient to use.
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3.9 ML/I Syntax

In ML/T each macro has its own delimiter structure, which defines the patterns of delimiters
that can occur in calls of the macro. Each macro can have a wide range of possible delimiter
patterns, and indefinitely long sequences of delimiters are possible. A delimiter structure is
in fact a directed graph where the nodes represent the delimiters and the paths leading from
a node determine which delimiters can follow the delimiter represented by the node. There
are facilities in ML/I for causing the text replacing a macro call to be dependent on the
pattern of delimiters that occurred in the call. It is worth comparing the ML /I method with
that of LIMP in the case where a macro has N possible delimiter patterns, where N exceeds
one. (In LIMP the macro would be represented as N different macros.) It is assumed that
each of the N delimiter patterns requires a different replacement. If N is small then LIMP
wins, since it is necessary in ML/I to write statements within the replacement text of the
macro to test which pattern occurred in its call, whereas in LIMP each pattern is uniquely
associated with its own piece of replacement text. As N becomes larger, however, it becomes
increasingly tedious to enumerate all possible patterns, as is required by required by LIMP,
and the ML/I method becomes better. It would, for instance, be almost impossible in LIMP
to implement a macro of form (where the notation is that of Brooker and Morris [3], which
is also used in the description of ML/I):

IF relation [ (|) relation *? ] THEN ... [ ELSE ... ? ] END
[ (&) ]

where a relation was of form:

= )

argument (> ) argument

< )

(etc.)
On the other hand, it is relatively easy to write such a macro in ML/I. Another feature
of ML/T is that it allows ezclusive terminators. This is a means of saying that a call is to
be the text up to but not including a given symbol. This has several applications, one of
which is to allow a symbol to serve the dual purpose of signifying the end of one call and
the beginning of another, as the symbol “newline” does in LIMP.

3.10 Notation for Formal Parameters

Formal parameters are used in the replacement text of a macro to indicate where the
arguments are to be slotted in. The two methods most commonly used to designate formal
parameters are designation by number and designation by name.

In the first method a formal parameter is represented by a number, which indicates the
position of the corresponding argument in the macro call. This number is usually preceded
by a unique marker. ML/T uses this method for specifying formal parameters and to some
extent generalises it by using the same mechanism for denoting the inserting of delimiters,
macro variables, and macro labels.

In the “designation by name” method, each formal parameter is represented by a
unique symbol, normally an identifier. The correspondence between these symbols and the
arguments is defined either in the macro declaration, or by means of separate statements
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as in TRAC. In TRAC formal parameters are defined using a general string-segmentation
statement, a method offering considerable flexibility. In “designation by name”, formal pa-
rameters might be regarded as local macros, the replacement text for each formal parameter
being the corresponding argument.

“Designation by name” is probably the method that would most appeal to the user,
although when a macro can have an indefinitely long list of arguments, some sort of number-
ing system is always necessary. XPOP extends designation by name in an interesting way.
In XPOP if no argument is supplied corresponding to a given formal parameter then that
formal parameter stands for itself (unless the user of XPOP takes special action to inhibit
this facility). Hence the name of the formal parameter is its default value. However, this
scheme for default values has its pitfalls and the method of keyword parameters mentioned
earlier is probably preferable.

3.11 Syntax of Macro-Time Statements

Some macro processors, for instance GPM, regard macro-time statements in the same way
as macros, except that the action for macro-time statements is built into the system rather
than defined by the user. In these systems macro-time statements can be regarded as
system macros; they have the same syntax as calls of ordinary macros. This method makes
it possible for the user to build up his own macro-time statements in terms of existing ones
by using macro techniques.

TRAC adopts the opposite approach to GPM by treating macro calls as a special kind
of macro-time statement. Moreover, there are processors which treat the two concepts as
entirely different entities with completely different syntaxes. In this latter case the syntax
of macro-time statements does not have fundamental importance and any syntax that is
reasonably easy to use and to implement is entirely satisfactory.

3.12 Comparison of Syntaxes

The purpose of the rest of this Chapter is to consider some general points that are of
relevance in the choice of syntax of a macro call, and to consider what is gained by the
more general forms of syntax. It must be emphasised that it is not intended to show that
one method is “better” than some other method, as this is rarely, if ever, completely true.

3.13 Notation-Independence

Macro processors requiring a rigid syntax for macro calls suffer from the disadvantage
that the text to be fed to them has to be written with the macro processor in mind.
Macro processors allowing a more general syntax have applications in performing symbol
manipulation on arbitrary pieces of text. For example, ML/I and LIMP can be used for
applications in context editing; in particular, ML/I has been used as an aid to converting
between FORTRAN IV and FORTRAN II (see [4]). Macro processors which can work
on arbitrary text will be called notation-independent. Strictly speaking the term “fairly
notation independent” should be used when talking about ML /I and LIMP, since each has
its limitations. However, macro processors such as these, which give a fair degree of freedom
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on the form of the source text will be included under the heading “notation-independent”.
Note that a macro processor can be general purpose but not notation-independent. An
example is GPM.

Over and above their use as editors, macro processors that are notation-independent
have a more important advantage. This advantage is the capability of “working behind the
user’s back”, and thus effecting “context-dependent replacement”. This is discussed in the
next section.

3.14 Context-Dependent Replacement

Context-dependent replacement is the replacement of a macro call by a piece of text, the
form of which is dependent on the base-language context in which the call occurs. An
example of this, which has been mentioned already, is the case where the text replacing a
macro call depends on the data attributes of the variables supplied as arguments; in this
example the context is supplied by declarative statements. There are many other examples
where context-dependent replacement is desirable. For instance it might be desired to know
whether or not a macro call occurs within a base language subroutine, what the name of the
current “control section” is, whether or not the call is within a DO loop and, if so, what the
controlled variable is, and so on. In fact most forms of optimising performed by compilers
represent context-dependent replacement. It is clearly impractical for the user to supply
extra arguments to macro calls in order to pass all this information across. Indeed the
information might not be known at the time the macro call was written. Hence the macro
processor should glean all the required information for itself by examining the appropriate
base language statements and remembering information by setting macro variables.

A macro processor that is notation-independent is capable of doing exactly this, though
it may only be capable of using the context supplied by the text preceding a macro call,
and not the context supplied by the text following a call. (Multi-pass macro processors
are discussed in Chapter 6.) Assume, therefore, that it is desired to use such a macro
processor to “intercept” base language statements of a given form in order to keep a record
of context. To achieve this, a macro is defined with the same syntax as the base language
statement so that each occurrence of the base language statement results in a call of the
macro. The action of the macro is to set those macro variables that are used to keep a
record of the base language statements and to replace the macro call by a copy of itself
so that the original text is not changed. (A concrete example of this technique is given in
section 7.4.6 of Appendix A.) The user can be entirely unaware of this behind-the-scenes
activity of the macro processor. Indeed, if code written by one programmer were placed in
the middle of some code written by another programmer, then statements written by the
second programmer could be intercepted by the macro processor and could affect macros
written by the first programmer. The second programmer could be completely unaware of
the existence of the macro processor.

3.15 Use of Newline

Many macro processors, including LIMP, WISP, and most macro-assemblers, require that
each macro call occupy exactly one line of text (or more strictly one record of text since
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there is often a facility for overflowing to the next physical line if one physical line is filled
up). This has the following advantages:

a. The user does not have to write explicit characters at the beginning and end of each
call.

b. The text is easier to read.

c. A single character “newline” can serve a dual purpose, namely to terminate one call
and commence another.

d. Some degree of notation-independence is achieved.

Needless to say, however, there are some compensating disadvantages. These include:
a. Calls cannot be nested within other calls.

b. For the macro processor to be practically useful, it is almost imperative that base
language statements should be written one to a line. Certainly they should not be
allowed to straddle lines.

c. As a result of b), each macro must represent a series of base language statements. It
would not be possible for a macro to represent any other syntactic class, for instance a
variable name.

3.16 Notational Restrictions

All the text macro processors that have been considered have required that each macro call
should begin and end with predefined symbols. (These symbols are either universal to all
macros as in GPM, or dependent on the macro being called, as in ML/I.) Hence all calls
must be bracketed within fixed delimiters. This notation will be called bracketed notation.

Many people regard the requirement for bracketed notation as a great disadvantage of
macro processors. For example, they would like to write a macro call as argl + arg2 rather
than some of the following alternatives, which are offered by various macro processors:

a. ADD (argl, arg2)

b. + (argl, arg? )

c. $+, argl, arg2;

d. The alternatives offered by macro processors that would require each macro to be
written as a statement.

Various techniques can alleviate the awkwardness of bracketed notation, in particular the use
of the character “newline” as a delimiter and the use of “exclusive” terminators. However,
the only macro processors that manage to dispense with bracketed notation altogether are
the syntactic macro processors of Cheatham and of Galler and Perlis. Even these have not
been implemented, though they are feasible to implement. The reason why these macro
processors are able to get away from bracketed notation is that there is no problem in
separating macro calls from arbitrary pieces of text in between them, since the syntax of
the entire source text is analysed. Macros are restricted to occurring in certain syntactically
determined positions and the delimiters enclosing these positions also serve to delimit macro
calls.

The question arises as to whether it is possible for a text macro processor to get away
from bracketed notation. In other words, if bracketed notation is to be avoided, does the
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syntax of the entire source text need to be analysed? The only way of avoiding bracketed
notation is to allow the syntax of arguments to be specified and to recognise macro calls by
the pattern matching method. If the user were allowed much freedom in defining this syntax,
it would be necessary to use syntax-directed techniques to analyse macro calls. It would,
however, be incredibly slow to analyse the attempt to match every sequence of characters in
the source text. Moreover, several ambiguities would arise. Hence it is necessary in practice
to use a method such as Cheatham’s which analyses the entire source text and only searches
for macros in specified syntactic classes.

It might be possible, however, to allow the user to specify the syntax of his arguments
by placing them in one of a number of predefined classes, such as “identifier”, “bracketed
text”, etc. Provide these classes were very easy to recognise, it might be possible for a text
macro processor to recognise macro calls not in bracketed notation without being too slow.
However, it remains to be seen how simple these classes would need to be in practice and,
as a result of this, how useful the macro processor was.

3.17 Errors and Error Recovery

The effect of errors in writing the delimiters of macro calls depends on the recognition
method and on the syntax of macro calls. If a macro call is recognised only when a macro is
recognised, an error in writing a macro call might lead to the macro call not being recognised
as such. This applies especially if macros are identified by pattern matching. The end result
of a macro not being recognised will be an error during compilation or assembly, or worse
still, during execution.

In macro processors that use warning markers or macro processors that recognise a
macro by its name, some syntactic errors will be detected at macro-time, which is, of
course, the most desirable time. However, even if an error is detected it may considerably
upset subsequent macro processing, especially in macro processors which allow nested macro
calls. In GPM or ML/I, for instance, if the terminator of a call is omitted then the entire
source text might be scanned to search for the terminator, thus effectively ending macro
processing. In ML/I this applies even if an intermediate delimiter is incorrectly specified.

As far as error detection and recovery is considered, it is best if a processor has a lot
of restrictions and a lot of redundancy in specifying syntax.

In macro processors which recognise a macro by its name, there is a danger of a piece
of text being taken as a macro call when this was not intended by the user. However, this
problem is worse in theory than in practice. In support of this assertion it can be said that
ML/T offers the user the choice of writing a warning marker in front of each macro call or of
risking unintended calls. Nearly all users take the risk as they would almost certainly make
more errors if they worked in “warning mode” due to the mistyping or accidental omission
of warning markers.
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4 Text Evaluation

The basic action of a macro processor is to scan text and perform certain replacements in
the text. This process will be called evaluating text. A macro processor will, during any
one job, normally scan source text, replacement text and arguments to macros. The order
in which this is done, the interrelations between different pieces of text and the effect of
new macro definitions on subsequent evaluation are all questions that are fundamental to
the design of a macro processor.

Mcllroy’s philosophy that all text should be treated in a uniform manner seems a
desirable criterion to adopt in this area. An implication of this is that recursion should be
permitted. Many people feel that recursion is a somewhat academic tool in a high-level
language, and the lack of necessity for recursion in this area is illustrated by the success of
FORTRAN. However, in macro processing, as in other symbol manipulation applications,
recursion is very desirable and arises in quite simple applications.

This Chapter will start by discussing two other considerations which are as important
as recursion in determining the implementation method but which normally receive little
attention in the design of a macro processor. These considerations may be considered to
be in the same status nowadays as recursion was several years ago, say before the advent
of ALGOL. In those days it was often impossible from reading the description of a piece of
software to ascertain whether recursion was permitted, probably because the designers of
the software had not even considered the problem. The two considerations to be discussed
below, which will be called respectively “name or value” and “multi-level calls”, are in the
same state nowadays.

4.1 Name or Value

The difference between “call by name” and “call by value” for subroutine arguments is
well understood, but similar considerations for arguments of macro calls have received little
attention. The problem arises when it is possible for an argument of a macro call itself to
contain a macro call, i.e. when one macro call, which will be called the nested call, can be
nested within another, which will be called the outer call. The following are possible ways
of treating this situation:

a. If a nested call is encountered it is immediately evaluated and replaced by its value.
This method will be called call by immediate value.

b. The outer call is scanned over without performing nested calls. Each argument of the
outer call is evaluated and replaced by its value before the replacement text of the
outer call is entered. This method will be called call by delayed value.

c. The outer call is scanned over without performing nested calls, and its replacement
text is evaluated. Arguments are evaluated only when they are inserted into this
replacement text. This method will be called call by name.

This is not, of course, a complete list of possibilities. However, the above three methods
are the methods most likely to be used in practice. To illustrate the difference between the
methods, consider the following GPM macro calls:

$ OUTER, $ NEST;, C;
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where the replacement text of the macro NEST is “A, B”. Depending on which method was

used — in actual fact GPM uses “call by immediate value” — the arguments passed to the
call of OUTER would be:

Method of call 1st Argument 2nd Argument 3rd Argument
Immediate value A B C

Delayed value A'B C (none)

Name $ NEST; C (none)

Due to the implementation overheads of offering the user a choice, most macro processors
have a fixed method of treating arguments, which applies to all arguments of all macros.
This contrasts with some algebraic programming languages which offer the user the choice
for each argument of whether it is to be called by name or value.

In a very large number of cases the choice of method has no effect on the end result.
However, there are some important cases where one or other of the methods is definitely
superior, and some of these will now be considered.

In applications such as the generation of machine code where macros may be closely
interrelated, it is important, when macro calls are nested, to be able to communicate from
one macro to another. In this respect, “call by name” is superior to the other methods
since nested macro calls are evaluated in the context into which they are to be inserted.
Thus in the earlier example assume that the macros OUTER and NEST both generate
code for a machine with a single accumulator and assume further that a macro variable X
is used to keep track of what is in the accumulator. If the “call by name” method is used
then X can be examined within the replacement text of NEST and code can be generated
accordingly. If either of the other methods of call is used this technique does not work
since X is examined at the wrong time. This advantage of “call by name” is similar to the
situation that arises in syntax-directed compiling, where “top down” is better than “bottom
up” for code generation.

In addition to this, two other merits can be claimed for “call by name”, namely:

a. In the replacement text of a macro both the text of arguments and the values of
arguments may be examined (e.g. “Al. and “WA1. in ML/I).

b. It may be possible to create, within the replacement text of a macro, macros to operate
on its arguments (e.g. the use of unprotected inserts in ML/T).
On the other hand, the “call by immediate value” method has the following advantages:
a. It makes “descendant calls” more powerful. These are discussed in the next section.
b. Macro names may be generated dynamically from other macro calls.

“Call by delayed value” has the second of these advantages, but apart from this can be
simulated using the “call by name” method.

4.2 Multi-Level Calls

A macro call is a piece of text. The question arises as to whether a macro call must be
written as a contiguous piece of text or whether it can be built up of separate pieces of text.
This is best illustrated by an example. Assume that in ML/I the following definitions are
written:
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MCSKIP MT,<>;

MCDEF NAME AS <MCSET>;

MCDEF RHS AS <P2+1;>;

NAME P1 = RHS
The question to be asked is whether the last line represents a call of the macro MCSET.
In fact, ML/I does not allow calls such as this so the answer is “no”. However, assume
that there exists a macro processor, called ML/II, which is similar to ML/I except that it
allows calls such as the one above. In ML/II, therefore, the call of MCSET would start
in the replacement text of NAME and then ascend to the source text with the text “Pl="
and then descend into the replacement text of RHS for the text “P2 + 1;”. Hence, one may
speak of descendant and/or ascendant macro calls, and a macro call which ascends and/or
descends will be called multi-level. A multi-level call is, therefore, a call built up of separate
pieces of text.

Multi-level calls are not simply an academic consideration. They have very important
applications in the fields of optimisation and simplification. To illustrate this, an example
in the field of optimisation will be considered. One of the well-known problems with using
macros to generate machine code is that inefficiencies occur at the boundaries between
macros. Thus in the case of PDP-7 assembly language, one macro might generate the
instruction

DAC XXX

(which means “store accumulator at XXX”) whereas the next instruction, occurring in the
source text or generated by another macro, might be

LAC XXX

(which means “load accumulator from XXX”). Now this second instruction is redundant,
and so it is desirable to write a macro which deletes the second instruction every time the
above combination occurs. In ML/II, which like all hypothetical software, is very powerful,
this can be achieved simply by designing a macro with name:

¢‘DAC XXX
LAC XXX’°

and with replacement text “DAC XXX”. (This macro works only for one particular XXX.
However, it would not be very difficult to generalise it to apply to all XXX.) In ML/I,
however, a macro such as this would be useless (unless it was used in a second pass through
some previously generated text) since it would only delete the redundant instruction if it
had been written physically adjacent to the preceding instruction, a situation that would
only arise if the programmer who wrote the instructions was incredibly incompetent.

Now that the existence and potential uses of multi-level calls have been established, the
various methods of replacing a macro call will be considered in order to see which methods
allow ascendancy and/or descendancy.

Assume that a piece of text has been scanned forward by a macro processor until it has
reached the stage that it has found a call and is ready to replace it. (This stage is reached
at the end of the first call that is encountered if arguments are called by value, or at the end
of the first non-nested call if arguments are called by name.) Let the text be of form XCY
where C is the macro call, X is the text preceding it, and Y is the text following it. (As in
“XCY” above, the concatenation of string names will be used to represent the corresponding
concatenation of the strings they represent.) Furthermore, let C’ be the replacement text
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of the macro called in C, and let the notation V(S), for some string S, represent the result
of evaluating that string. Using this notation, five possible methods of evaluating the string
XCY can be distinguished. These are:

a. V(XCY) = V(X)V(C’)V(Y). This allows no ascendancy or descendancy, since each of
X, C’, and Y is evaluated in isolation.

b. V(XCY) = V(XC’)V(Y). This allows descendancy (since a call can lie partly in X and
partly in C’) but not ascendancy.

c. V(XCY) = V(X)V(CY). This allows ascendancy but not descendancy.
d. V(XCY) = V(XC’Y). This allows both ascendancy and descendancy.

e. V(XCY) = V(X<V(C’)>Y), where the symbols “<” and “>” mean that the text desig-
nated by the enclosed symbols is to be copied literally and not evaluated. This method
is similar to method a) but allows C to occur within another macro call.

If arguments are called by immediate value, then C may be nested within a call lying partly
in X and partly in Y. In this case neither X nor Y can be evaluated in isolation and hence
only methods d) and e) are applicable. With other methods of argument treatment, method
a) is most likely to be employed, though any method is possible.

Note that the above list of methods is not an exhaustive one, and many other possi-
bilities, some reasonable and some absurd, can be imagined. TRAC, for example, has an
option whereby replacement text is treated as a literal string. This can be represented as

V(XCY) = V(X<C>Y)
The action of ML/I on encountering a nested call can be represented as
V(XCY) = V(X<C>Y)

GPM adopts a compromise between methods d) and e). The beginning and end of a call
must be at the same level, as in method d), but intermediate delimiters can be at lower
levels, as in method e). Any of the above methods can be applied to the replacement
of formal parameters by arguments as well as to the replacement of macro calls. Tt is
conceivable that a macro processor could use a different method in the two cases.

4.3 Conclusions on Multi-Level Calls

The advantage of full generality in multi-level calls is that it makes it easier to write macros
for simplification and optimisation. Otherwise operations such as these might require several
passes through the source text.

However, it is necessary to mention the disadvantages of full generality. Firstly, there
are implementation problems, which may be quite severe if macro calls need not be properly
nested. Secondly, there is the problem of error recovery if ascendant calls are allowed. The
problem is that if the user accidentally omits a terminator of a macro call which occurs
within replacement text, then the macro processor will never give up searching for this
missing terminator, whereas if ascendancy were forbidden then the error would be detected
when the end of the replacement text was reached. Thus the user might have terrible
difficulties trying to locate his bugs if ascendant calls were allowed.
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4.4 Output

Now that the order and methods of evaluation have been considered in some detail, it is
necessary to consider some more mundane questions as to what happens to the output from
the evaluation process. This output is normally in the form of text, though in syntactic
macro processors it may be in the form of a syntactic tree or some similar representation.
The output from a macro processor is not normally an end in itself but rather represents an
intermediate stage in the conversion of source text to machine code. However, it is always
useful to allow the user to examine this output. A particularly helpful form is to give a
listing of the output laid out so that each piece of macro-generated output is preceded by
a print-out of the macro call that produced it. This macro call should be represented as a
comment.

Few macro processors have explicit output statements for copying individual pieces of
text to the output stream as it is normally the rule that text not forming part of a macro call
or similar construction is automatically output. However, two examples of macro processors
which do require explicit output statements are TRAC and meta-assemblers. It is very
useful if a macro processor is capable of producing several separate streams of output with
the ability of switching from one to another when desired. This facility would be useful if
a macro processor was generating assembly code which consisted of declarative statements,
in-line code and subroutines, all produced in a haphazard order. It would be useful, indeed
in some cases necessary, to collect together the different types of output. This could be
achieved by using a different output stream for each type, so that the assembler could then
take these streams in the required order.

Some macro processors have an even better facility whereby the macro processor itself,
rather than the processor which follows it, organises the macro-generated output into the
desired order. XPOP, for example, has elaborate facilities for storing away pieces of text,
either individually or in groups, and then subsequently retrieving these pieces of text. Many
other macro-assemblers have a “REM” statement for generating code that is to be inserted
at a point remote from the place it was generated. In other macro processors global character
variables or even macro definitions can serve the same purpose, though these may not be
suitable for storing strings that are so large that they require the use of backing storage.
(Section 7.4.7 of Appendix A contains a concrete example of this technique.) In addition to
these facilities, a macro processor should have a special output medium for the production
of error messages.

4.5 The Scope of Macro Definitions

A primary consideration affecting the evaluation of text is the scope of macro definitions.
The term environment will be used to mean the collection of macro definitions and sim-
ilar constructions affecting text evaluation that are in force at any one time. Hence the
“meaning” of a piece of text depends on the environment under which it is evaluated. Some
simple macro-assemblers evaluate all text under the same environment. However, a consid-
erable amount of power is gained by allowing the environment to vary throughout macro
processing. In particular it is useful to have macro definitions with more limited scope
than the entire source text, and, furthermore, as Mcllroy points out, it is desirable to allow
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new macro definitions to be generated dynamically during macro processing. Hence it is
desirable to allow a dynamic environment.

However, dynamic environments lead to a difficult problem that arises in several areas
of macro processing. It will be called the change-of-meaning problem. The change-of-
meaning problem arises if a piece of text is scanned by a macro processor, and assumptions
about the text as scanned during the first scan are carried over to the second scan. As
a concrete example of the change-of-meaning problem assume that in ML/I every time a
macro is defined it is desired to perform a prescan of its replacement text and search for all
occurrences of the macro-time assignment statement, MCSET, and replace each occurrence
by compiled code (no doubt preceded by some special marker). In all subsequent calls of the
macro this compiled code could be executed, thus saving the overheads of interpretation.
However, this whole operation could be invalidated if the meaning of the replacement text
and in particular the use of MCSET was redefined during subsequent macro processing.
For example, any of the following would invalidate the compiling of MCSET statements:

a. Redefining MCSET.
b. Switching into warning mode or out of warning mode.

¢. Defining new skip brackets which cause some occurrences of MCSET to be treated as
comments.

The change-of-meaning problem can arise, in one area or another, in all macro processors
which allow a dynamic environment. The problem tends to be worst in general-purpose
macro processors, where no assumptions can be made about the syntax of the source text.
However, even in macro-assemblers it is possible for the problem to arise, for example, if the
replacement of a macro call or formal parameter is allowed to insert a symbol that indicates
the start of a comment or character string constant.

4.6 Definitions with Restricted Scope

Two questions need to be answered with respect to the scope of macro definitions. These
are:

a. Must a macro be declared before it is used?

b. What is the scope of a macro that is defined within the replacement text of another
macro? Is it global or local?

If the answer “no” is taken to question a) and a macro definition is to apply to text that
precedes it, then it is necessary to perform a prepass to pick up all macro definitions,
and a second pass to evaluate the source text under this environment. Because of the
change-of-meaning problem and implementation difficulties it would probably be necessary
to forbid any dynamic changes in the environment during the second pass. Hence all macro
definitions would apply to the entire source text (unless a facility similar to the ACTIVATE
and DEACTIVATE statements of PL/I were added) and it would be impossible to redefine
a macro. These restrictions, together with the overheads of a prepass, more than offset
the marginal gain from not having to define a macro before it is used. (However, if it is
necessary to perform a prepass for some other reason, such as lack of storage, then the
question is rather more open.)
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In answer to question b), it is definitely desirable to have global scope for definitions.
This allows the user to write macros of a declarative nature, which, within their replacement
text, generate macro definitions that are to apply to the rest of the source text. This
technique is described by Mcllroy and in Section 7.4.10 of Appendix A.

However, although global definitions are the more necessary, there are also uses for local
macro definitions, especially if, as will be discussed in the next Chapter, macro definitions
are to serve as macro-time character variables. There is a certain amount of choice in the
meaning of “local”. It can mean “confined to the replacement text of the macro in which it
occurs” or “confined to the replacement text of the macro in which it occurs together with
the replacement text of any macros called within that macro and/or the arguments of that
macro”. Each approach has its advantages and disadvantages, though these are of a rather
obscure nature and are rather difficult to evaluate.

4.7 Skips

It is normally desirable to inhibit macro replacement within certain contexts of the base
language, such as comments, character strings and literal strings which may look like macro
calls. The same thing applies to the replacement of formal parameter names by the corre-
sponding arguments.

Thus many macro processors allow constructions similar to skips in ML/I, which limit
the scope of replacement. However, skips usually lead to a small sub-problem. If, for
instance, character string constants are “skipped’, then it becomes very difficult if, in one
particular instance, it is desired to perform the replacement of a macro call or formal
parameter within a character string constant.
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5 Macro-Time Facilities

Every macro processor has a programming language of its own for giving instructions to
the macro processor and for defining and manipulating macro-time entities. This Chapter
considers some of the facilities that may be offered.

5.1 Macro-Time Variables

Nearly all macro processors have some facility for macro variables, i.e. variables operative
at macro-time. In the same way as for macro definitions, it is desirable to have available
both local macro variables and global macro variables. Global variables are needed to relay
information from one macro call to another, and local variables are desirable for internal
working within the evaluation of individual macro calls. If recursion is permitted, local
variables are almost obligatory. Macro variables are normally of one of the three following
types: character, integer, Boolean.

5.2 Character Variables

If a macro processor has sufficiently powerful facilities for defining macros then there is no
need for character variables since macros will serve the same purpose. The conditions that
must be satisfied for this to be possible are:

a. Macros can be redefined.
b. Macro calls may be written within macro-time statements.

¢. Macros can be either global or local.

Failing these conditions, macro variables of type character are desirable. Since variable-
length character strings present an implementation problem unless a macro processor is
organised using list processing techniques, character variables are often given a fixed maxi-
mum length.

LIMP, which is implemented by list processing techniques, probably offers the best
facilities for character variables present in any macro processor. A feature of LIMP is that
within the replacement of a macro the arguments act as character variables and the same
facilities are used to manipulate both arguments and other character variables. This results
in the unusual and useful facility of being able to redefine arguments.

Another macro processor offering unusual features in this respect is IMP, which allows
the user to manipulate a macro-time stack.

5.3 Integer Variables

In a macro processor, as in most other symbol manipulation programs, it is unnecessary to
have numerical variables of any type but integer. Variables with integer values are useful
for counting, for generating constants and as indices for switches and arrays. It is necessary
to have facilities for performing macro-time arithmetic with these variables. However, if a
macro processor allows character variables, it is not absolutely necessary that it allow integer
variables as well, because integers can be stored as a string of characters and arithmetic
can be performed on them in this form, though this may involve a certain loss of efficiency.
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5.4 Boolean Variables

Boolean variables are rarely implemented since integer variables can serve the same purpose.
However, System/360 Macro-Assembler contains Boolean variables and has very powerful
facilities for using them.

5.5 Further Facilities

From the above discussion it can be seen that if macros are sufficiently powerful they can
be used as character variables which in turn can be used as integer variables which in
turn can be used as Boolean variables. Hence no macro variables are absolutely necessary.
However, for reasons of efficiency, especially if macro-time statements can be precompiled
(see Chapter 6), it may still be desirable to have macro variables. Another reason for
having explicit macro variables is that they may easily be organised into arrays, whereas
there are not many macro processors where it is easy to subscript a macro name. Most
macro processors which have macro variables have a facility to allow them to be combined
into vectors, though few macro processors, if any, allow multi-dimensional arrays.

Over and above the facilities described above, it is necessary to have the equivalent of
what Mcllroy calls created symbols. These are unique sequences of symbols created by the
macro processor, which can be used when it is desired to generate a set of different names
in the output text.

It is often useful for the macro processor to maintain predefined values or predefined
initial values for some macro variables. ML/I, for instance, has a scheme for passing in-
formation to a macro in the form of initial values of its local variables, and System/360
Macro-Assembler has a special global character variable in which the name of the current
“control section” is stored. Another useful feature might be to make the current line num-
ber available as the value of a macro variable, since this aids in the production of the user’s
OWI €rror messages.

5.6 Macro-Time Statements

It is necessary for the user to be able to write instructions to the macro processor for such
purposes as to make a new macro definition, to transfer control (i.e. to GO TO) or to
manipulate macro variables. It will be assumed in this discussion that these instructions
are written as statements, though they could, in fact, be represented in other ways. As
has been mentioned already, sone macro processors treat macro-time statements as system
macros. In these cases the macro-time statements have arguments in the same way as other
macros and these arguments are evaluated to replace any macro calls, formal parameters,
etc., occurring within them. After this evaluation, arguments are usually treated as literal
strings rather than as names of other strings, a point emphasised by Mooers [34] in a
discussion on TRAC. However, not all macro processors operate in this way and many
perform no macro replacement within macro-time statements.

There is a wide variety of possible macro-time statements. Every macro processor
must, of course, contain a statement for setting up macro definitions, but the other kinds
of statement are of a more optional nature. It must be possible to place definition-creating
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statements in the source text but the remaining statements may be restricted to occur only
in replacement text. Such a restriction is not, however, very desirable, and it is better to
follow Mcllroy’s dictum that all text should be treated in the same way.

In the discussion that follows arithmetic and control statements are both considered in
some detail and then some other possible types of statements are more briefly considered.

5.7 Arithmetic and Control Statements

Nearly all macro processors have macro-time statements to perform arithmetic and to pro-
vide a conditional transfer of control. However, Strachey [38] has shown that, with sufficient
ingenuity, the user of GPM can construct ordinary macros which perform arithmetic and
provide a conditional GO TO facility, and no doubt the same applies to other macro pro-
cessors. Such schemes as Strachey’s, though, are very slow indeed and so in practice it
is desirable to have built-in macro-time statements to perform these functions. Mcllroy
goes to the opposite extreme and says that macro-time statements should be as powerful
as the statements to be found in algebraic languages. This view, which is reflected in the
PL/I macro processor, has been discussed already. Macro-time arithmetic facilities are of-
ten offered in the form of a macro-time assignment statement. There is no need to allow
very elaborate arithmetic expressions as it is very rare to perform complicated arithmetic
at macro-time.

Macro processors differ considerably in their facilities for macro-time control statements
(i.e. DO statements and (conditional) GO TO statements). The PL/I macro processor,
which has elaborate IF and DO statements together with a GO TO statement, probably of-
fers the most comprehensive facilities. Other macro processors, especially macro-assemblers,
content themselves with a DO statement and a conditional statement that can skip one line.
Macro processors which treat macro-time statements as system macros can make do with
very primitive macro-time statements, provided that the user can define his own macro-time
statements by designing suitable macros which expand into these primitive statements.

It is useful if some kind of multi-way switching facility is offered, either through the GO
TO statement or otherwise, since multi-way decisions are very common in the generation
of text to replace a macro call.

If there exists a general facility for a GO TO statement, there must, of course, be a
corresponding facility for macro-time labels. Most macro processors make labels local to
the text containing them but it would be useful, although more difficult to implement, to

allow a more general facility for transfer of control from macro to macro, analogous to the
GO TO statement in ALGOL.

In implementing macro labels and GO TO statements, it is most natural that on
encountering a macro label the macro processor should remember its position in case that
label is subsequently referenced in a GO TO statement. Although this is probably the
best method of dealing with labels, it has its difficulties because of the change-of-meaning
problem mentioned earlier. Examples of possible difficulties are:

a. The label name may be defined as a macro.
b. A new skip may be defined, which causes the label to end up in the middle of a comment.

¢. The label may be multiply-defined but only one occurrence of it may have been en-
countered when a GOTO statement is reached.
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If any of these problems can arise it is necessary to define the macro-time GO TO statement
very carefully in order to state exactly what happens.

5.8 Further Statements

As well as assignment statements and control statements, there is a very large range of
further macro-time statements or functions that may be offered.

String manipulation facilities are probably the most desirable of these. LIMP is very
good in this respect in that it includes most of the facilities of the symbol manipulation
language SNOBOL. Other macro processors limit themselves to providing a few functions
for finding substrings.

Another facility which might be considered under the heading of string manipulation
is the ability to manipulate scanning pointers. To achieve this facility, a macro processor is
described in terms of hypothetical scanning pointers moving along the source text and the
replacement text of macros, and the user is allowed to change these pointers if he wishes.
This is a very powerful facility, perhaps too powerful, as it lets the user completely clobber
the macro processor.

Another category of desirable macro-time facilities comes under the heading of 1/0.
Included in this category are facilities for producing the user’s own diagnostic messages, for
saving text on backing store and for interfacing with a library. Some aspects of this were
discussed in Chapter 4.

Lastly the XECUTE mode available in XPOP should be mentioned. This is a facility
whereby the user can supply a sequence of FAP-like instructions that is to be executed
immediately on being scanned by XPOP. By this means a sufficiently knowledgeable user
can patch XPOP itself and add new facilities to it.

5.9 Macro-Time Dictionaries

Shaw [36] in an unpublished critique of XPOP puts the case for a dictionary facility at
macro-time. Shaw states that the two main features that make high-level programming
languages more powerful than assembly languages are:

a. One-to-many operators. One high-level operation may be equivalent to a sequence of
several assembly instructions.

b. One-to-many operands. In assembly language an operand usually stands simply for a
machine address. In high-level languages, on the other hand, the name of a variable
also stands for all its attributes. For example, when one writes:

A+ B
the symbol A not only defines a machine address but also conveys the information as
to whether the operand it represents is fixed point or floating point, double precision

or single precision, local or global, and so on. This information is supplied once and
for all in the declaration of the variable A, and is not repeated every time A is used.

Shaw’s one-to-many operands are, in fact, a particular case of the context-dependent re-
placement mentioned earlier. Of Shaw’s two characteristics, macro processors are good for
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one-to-many operators, but generally poor for one-to-many operands, and, in fact, for most
forms of context-dependent replacement, in particular for optimisation. In order to alleviate
this deficiency some macro processors contain some sort of dictionary facility.

In fact many macro processors that do not explicitly have a dictionary facility can be
made to simulate such a facility. If one wants to remember the attributes of a variable
one can define a macro with the same name as the variable and store information about
the attributes of the variable as the replacement text of the macro. This technique is
illustrated in the paper on ML/I [4]. Bennett and Neumann [2] show how the same thing
can be accomplished by a cunning method of building up names by concatenation. However,
such techniques as these are rather artificial and in many cases slow in execution, and so
there is a good case for an explicit dictionary facility in a macro processor.

LIMP offers such a facility. In LIMP the user has absolute control over the building
and interrogation of the dictionary, which is represented as a tree. However, LIMP is a
one-pass system and, if its dictionary facility is to be useful, variables must be declared
before they are used.

The System/360 Macro-Assembler, taking advantage of its base language dependence,
offers an even better dictionary facility. This macro-assembler, as has been mentioned
already, automatically performs a prepass to build a dictionary of all the assembly language
variables declared in the source text. This dictionary may be interrogated when macro calls
are replaced. However, if new variable declarations are generated by macro replacement
these do not appear in the dictionary.

Unfortunately if an attempt is made to generalise this technique, logical difficulties
arise due to the change-of-meaning problem. This is especially true if the technique is
applied to a high-level language where variables can have limited scope. In this case the
scope of declarations picked up on the prepass can be altered by material generated during
the second pass, for example the introduction of overriding declarations or of new BEGINs
or ENDs. Hence decisions based on the contents of the dictionary can later be invalidated.
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6 Implementation Methods

Three central considerations in the implementation of a macro processor are:
a. How many passes?
b. Are macro-time instructions pre-compiled?

c. Are list processing techniques used?

These three questions are discussed in detail in the material that follows.

6.1 Multi-Pass Macro Processors

Most macro processors are logically one-pass, i.e. the source text need only be scanned once.
It has been argued previously that a prepass especially to pick up macro definitions is not
generally desirable. The only macro processor that has been considered to gain from being
two-pass is the System/360 Macro-Assembler, which builds a dictionary on the first pass.
Apart from such special-purpose considerations, the only good reason for a multi-pass macro
processor is the lack of enough storage to do everything in one pass. However, although
a macro processor should be one-pass, it should still be usable for those jobs that require
several passes through the source text. To make this possible, a macro processor should
be capable, at the end of one pass, of re-entering itself and performing a second pass using
some of the information derived on the first pass. This would make it suitable for multi-pass
applications and would allow the actions of the passes to be defined by the user rather than
being fixed by the design of the macro processor. Furthermore, the overheads of performing
two passes would not be inflicted on the jobs requiring only one. In order to be fully suitable
for multi-pass applications, a macro processor should have some further properties over and
above the capability of re-entering itself. In particular since each macro-time statement in
the source text will usually be executed on one pass and ignored on all the other passes,
the user should have the ability to redefine macro-time statements to have null effect.

6.2 Pre-Compiling of Macro-Time Statements

Two kinds of macro-time statement can be distinguished. Firstly those, like macro defi-
nitions, which tend to occur in the source text and are executed only once, and secondly
those, like arithmetic and control statements, that tend to occur within replacement text
and are executed many times. Statements of the second kind will be called repeat-prone
statements.

There is clearly no case for compiling the first kind. However, in the case of macro
definitions that are used by many jobs the overheads of setting up the definitions every
time can be avoided if there is a facility for pre-editing definitions into the system. This is
specially important in syntactic macro processors, where the setting up of a definition may
be a lengthy process.

There is definitely a case for replacing repeat-prone statements by compiled code rather
than interpreting them every time they are executed. In jobs where complicated macros are
used, a large proportion of the time is spent in executing these statements and the speed of
macro processing can be increased very considerably by compiling them.
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Moreover, a macro processor which compiles repeat-prone statements is not much more
complicated than one that interprets them. After all, the only difference between interpret-
ing a statement and compiling it is that in the former case the statement is translated into
some instructions which are executed immediately whereas in the latter case these instruc-
tions are stored away to be executed later. It is quite easy to make the same routine capable
of either interpreting or compiling. The replacement of macro-time statements by compiled
code can be performed in any of the following ways:

a. Repeat-prone statements are compiled just before they are executed for the first time.

b. A prepass of the entire source text compiles all repeat-prone statements, including
those within macro definitions.

c. Every time a macro definition is set up, all the repeat-prone statements within its
replacement text are compiled.

The main difficulty with method a) is that there may be an implementation problem in
replacing a piece of text that is embedded in other text by code that may be a different size
to the original text.

Method b) has all the disadvantages of a prepass.

Method c) is probably the best for most implementations. It does require that some
repeat-prone statements be interpreted, notably those that are dynamically created and
those which occur in the source text, but this is no great disadvantage as these statements
will not occur very often and, as has been pointed out, it is quite easy to make the same
routine capable of both compiling and interpreting.

Compilation presents only one serious problem, namely the change-of-meaning problem.
This problem is worst in macro processors which treat macro-time statements like any other
text and allow macro calls within macro-time statements. If compilation is to be possible the
user must be forbidden from subsequently changing the meaning of the compiled statements.
The restrictions necessary to accomplish this may be quite straightforward and easy to
enforce in a special-purpose macro processor, but in a general-purpose macro processor the
necessary restrictions may be very difficult to define and almost impossible to enforce.

Nevertheless, in nearly all practical applications the user will not change the meaning
of his repeat-prone statements and hence if these statements are interpreted, the price of
interpretation is paid without the buying of its advantages. It is an unfortunate fact that
programmers have become trained in other areas never to change the meaning of their
statements, and when they come across an interpretive system they are reluctant to take
advantage of it and are, in any case, completely unfamiliar with some of the powerful
techniques that can be used.

6.3 List Processing Techniques

One of the most basic decisions to be taken in the implementation of a macro processor is
whether text is to be stored in the form of lists of characters or is to be stored contiguously
using one or more stacks. A macro processor implemented by list processing techniques
should offer more powerful symbol manipulation facilities and it should be relatively easy
to allow macros and other entities to be deleted or redefined. LIMP well illustrates the
power that can be gained from using list processing.
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However, the disadvantage of list processing techniques is that the macro processor
becomes rather slow at doing the simple things and, furthermore, rather wasteful of storage.
Since macro processors are usually rather slow at the best of times, the extra overheads of
list processing may make a macro processor too slow to be a practical tool for some of its
potential applications.

6.4 Further Considerations of Speed

The implementation considerations discussed already have a large impact on the speed of a
macro processor. However, the effect on speed of three other considerations should also be
mentioned. These considerations are: method of argument treatment, recognition method,
and use of backing storage.

The “call by name” method of argument is faster than the other two methods provided
that an argument is only inserted once into the replacement text of the macro to which
it belongs. This is because in the other methods when an argument has been evaluated it
has to be stored away somewhere until it is inserted, whereas in “call by name”, no special
action need be taken when an argument is first scanned and the argument is evaluated only
when it is inserted; at this time its value can be copied directly over to the output text.

A good deal of time may be spent by a macro processor in recognising calls. The
overheads of recognition are least if macro calls are introduced by an explicit warning
marker, as in GPM, and greatest if calls are only recognised by identifying a macro. In
LIMP, for instance, each line of text has to be compared with the pattern associated with
each macro definition, though the recognition process is speeded up by the use of trees. In
ML/I, if in “free mode”, each atom of the source text must be compared with all possible
macro names, though this, too, can be speeded up by a special technique, namely the use
of “hashing”.

The last consideration concerns the output text. The output from a macro processor
is normally sent to backing storage so that it can subsequently be fed to some compiler or
assembler. In addition to this, a multi-pass macro processor might require backing storage
for its intermediate output. As a consequence of this, the effective speed of a macro processor
may depend to a large extent on the efficiency of the use of backing storage. Freeman [13]
discusses some of the considerations in this area.

If a macro processor is small enough to share core with the piece of software which is to
receive its output then the need for intermediate output can be avoided by organising the
macro processor and the piece of software as co-routines. (For a description of the concept
of a coroutine see Conway [7].) This might represent a considerable saving of time and
hence is a point in favour of small and simple macro processors.

6.5 Further Storage Considerations

The design of a macro processor involves the usual, machine-dependent questions as to
whether character data should be “packed” and whether backing storage should be used for
certain data, for example macro definitions.

One special consideration affecting the use of storage in a macro processor is the design
of the macro-time GO TO statement, if there is one. If it is possible to perform a backward
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GO TO in the source text then it will not be possible to discard the source text after it has
been scanned over. Since this is a big overhead it is advisable to forbid backward GO TO’s
in the source text, but perhaps to allow a “DO” statement instead.
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7 Conclusions

Now that the design of macro processors, both existing and hypothetical, has been con-
sidered, the application areas introduced in Chapter 1 will be reviewed to see what has
been achieved and what can be achieved. Before this is done, however, three general points
should be made.

Firstly it should be remarked that it is still useful if a macro processor can be used in
a particular area even if jobs in that area can be done more easily by specially designed
software. Thus a macro processor capable of context editing is useful, even though a context
editor might do the task better, because:

a. An installation may not possess a special-purpose context editor.

b. Users familiar with the macro processor might prefer to use it to save the trouble of
familiarising themselves with a context editor.

¢. The macro processor will be useful for jobs on the borderline between context editing
and conventional macro processing or jobs involving an element of each.

A second general point concerns the ease of use of macro processors. Most macro processors
are in principle quite simple. However, they are completely different from any other type of
software and users may require some help and encouragement to start with. Confusion may
arise with the concept of macro-time statements and the difference between these and base
language statements. In a number of macro processors, replacement text often involves the
use of unusual characters (e.g. $, ~) for special purposes. This makes text hard to read,
and may act as a disincentive to the intending user. Another problem for the tyro may be
the detection of errors within macros, as facilities for detecting errors and recovering from
them are not always satisfactory. Overall, however, there is no reason why text macros, at
least, should not be a tool that every programmer is capable of using. However, syntactic
macros may be more difficult to write and might be considered as a tool only for systems
programmers.

Thirdly, there are many applications where it might be thought desirable for the user
of a macro processor to be unaware of its existence. For example, a programming language
P may be implemented by mapping it into a language B using a macro processor, and
then using the compiler for B to map the resultant text into machine language. Ideally the
user of P should be unaware that his text was mapped by macro replacement into B, any
more than the user of a compiler is aware of the mechanisms used for compilation and the
intermediate forms of text. However, this ideal is not usually attainable in practice since
error messages produced by the macro processor will be in terms of macros and, unless the
macro processor detects all errors, error messages will be produced by the compiler for B
in terms of the macro-generated text. This example illustrates the general point that the
user usually needs to know something of what is going on behind his back.

Discussions of the individual application areas follow.

7.1 Conclusions on Language Extension

The prime purpose of macro processors is to extend languages, and hence all macro proces-
sors have reasonable facilities in this respect. Many macro processors are, however, capable
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of introducing new statements into the base language but incapable of dealing with any
other syntactic class. This restriction is reasonably acceptable if the base language state-
ments have a very simple structure, as in assembly languages, but is less acceptable if the
base language is a high-level language. In high-level languages it is desirable for a macro
processor to be able to expand syntactic classes that form part of statements, for instance
expressions. Even in assembly languages it is useful to be able to macro-generate variables
and constants. Hence macro processors with no restrictions on the text to be expanded have
advantages over those that only deal with statements, and the higher level the base language
the greater these advantages are. However, even the most general macro processors have
severe limitations when they are used to expand parts of high-level language statements.
The two greatest problems are:

a. Notation. All existing text macro processors use bracketed notation for macro calls
whereas this notation is foreign to high-level languages. Within arithmetic expressions,
for instance, high-level languages use the relative priorities of arithmetic operators to
determine the bracketing structure.

b. Difficulty with replacement. The uses of macros are restricted because few high-level
languages allow statements to be written within other statements.

Problem b) is best illustrated by an example. Assume it is desired to introduce a macro to
multiply two complex numbers. Let a call of this macro be written

A CMULT B

where each argument is the name of a vector with two elements. Then if the macro is to
generate in-line code the macro call should be replaced by something such as:

(begin TEMP (1) = A(1) * B(1) - A(2) * B(2);
TEMP (2) = A(1) * B(2) + A(2) * B(1);
end) TEMP

(This means that the two statements should first be executed to assign values to the two
elements of the vector TEMP and then TEMP should be used as an operand.)

Unfortunately, few high-level languages allow the insertion of text such as the above
into the middle of statements. One of the languages that does allow “statements within
statements” is GPL, a language specially designed for extendability. It is suggested that
this feature is desirable in all high-level languages.

The introduction of new operators and data types is one particular case of the extension
of high-level languages by macro techniques that has received a good deal of attention
recently and is worthy of more detailed consideration. For a start it should be remarked
that text macros can only be used to introduce new data types that are expandable in terms
of existing data types, and the same will usually apply to syntactic macros as well.

Similarly, text and syntactic macros can only be used to introduce operators describable
in terms of the existing base language. However, most high-level languages already contain
facilities for introducing new data types and operators expandable in terms of the base
language. In PL/I, for instance, new data types formed of combinations of existing data
types can be built up by using “structures” and new operators can be introduced by using
“generic functions”. Thus a good deal of extension can be done without the aid of macros.
This fact, together with the fact that, when it is desired to add a new data type to a
language, this is often because that data type cannot reasonably be expanded in terms



Chapter 7: Conclusions

of existing data types, indicates that the importance of macros (other than computation
macros) in defining new operators and data types may be over-exaggerated. In fact, the
only advantages that may be gained from using macros to introduce new operators and data
types to a high-level language already containing reasonable features for defining functions
and data aggregates are:

a. Efficiency can be improved in many cases by generating in-line code rather than function
calls.

b. Notation can be improved, for example by using infix operators rather than functional
notation.

c. Existing polymorphic operators can be extended to cater for new data types.

(In high-level languages with exceptionally good self-extending facilities, it is even possible
to achieve b) and c¢) above without the use of macros.)

Existing text macro processors are not fully capable of achieving any of the three above
advantages because of difficulties with notation and replacement. However, this is not to say
that text macro processors are completely useless in these respects. To quote one example
of the introduction of new operators, text macros could be used to add to PL/I the ALGOL
facility for conditional expressions, i.e. expressions of form:

(if ... then expression 1 else expression 2)

It would clearly not be feasible to implement this facility by using functions. As further
examples of the use of text macros in this way, Hopewell [22] describes an extensive set of
macros for enriching Titan Autocode.

If syntactic macros are examined with reference to the three advantages above, they
come out well on notation but may have limitations in the other respects due to the difficul-
ties with replacement that have already been mentioned and due to the fact that information
about the data type of variables may not be available when syntactic analysis is performed.
However, the proposal by Galler and Perlis, which has been designed solely for the introduc-
tion of new operators and data types, is satisfactory in all three respects, but this proposal
requires special extensions to be made to the base language, which is ALGOL.

In conclusion it can be said that no macro processor is fully suitable for the extension of
high-level languages, though syntactic macro processors would represent a step forward from
text macro processors for high-level languages with suitable grammars. Perhaps the best
answer to the problem is to follow the philosophy of GPL and build better self-extending
facilities into the languages themselves.

7.2 Conclusions on Language Translation

In principle any macro processor that is both general-purpose and notation-independent
should be capable of translating between arbitrary languages provided that the rules for
translation can be specified. However, in practice there are considerable limitations. This is
because the rules for translating between languages usually turn out to be very complicated,
with numerous special cases, and the mechanisms offered by macro processors tend to be too
slow and too inflexible to perform a complete translation. This is, of course, a defect of any
“general-purpose” software. Successful translation operations performed by macros tend
to be very simple, like Dellert’s [8] translation between IBM 7090 and IBM 7040 assembly
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languages. The difficulties are well illustrated by considering the use of a macro processor
as a compiler, i.e. as a translator from a high-level language to a machine language. The
basic operations in compiling are reasonably simple, and can be performed by a macro
processor. However, a good deal of the work in writing a compiler is not concerned with
performing general operations on data, but is concerned with particular cases that do not
fit into any general pattern. The mechanisms of macro processors, though good for general
cases, usually turn out to be too inflexible to deal with special situations, in particular
with exceptions to general rules. Macro processors, as Shaw has pointed out, are generally
weak in performing context-dependent replacement. Furthermore, it is often desirable to
organise a compiler in several passes, perhaps producing intermediate text in the form of
a tree, and it would be very hard to make a macro processor do this. However, this view
of the inadequacy of a macro processor for compiling is not shared by Halpern [19]. He
argues that, except for algebraic languages and other languages that can be guaranteed not
to change, the best way of compiling is by using macro techniques, and that the main use of
macro processors is as general-purpose compilers, capable of compiling any language, and
allowing the user to extend any language thus compiled.

One area of application where notation-independent macro processors are very useful is
the area in between language translation and language extension. In this type of application
the user makes up a programming language of his own design and oriented towards his own
field of application and uses the macro processor to translate this language into some base
language. This cannot be regarded entirely as an application in language translation since
in practice the user, when designing his language, will bear in mind the characteristics of
the base language and the translating capabilities of the macro processor, and hence there
is an element of “language extension” about it.

In conclusion it can be said that macro processors can certainly be useful in language
translation if the translating rules are fairly simple, but if these rules are very complicated
the usefulness of a macro processor (or indeed of any general-purpose software) becomes
more doubtful. Note that the rules for translation between two languages can be very
simple even though the languages may look very different. For example, it is quite trivial
to translate between fully parenthesised algebraic notation and Polish Prefix notation.

7.3 Conclusions on Text Generation

To recapitulate on Chapter 1, the five expected capabilities of a macro processor in the
field of text generation were: conditional generation, repetitive generation, program pa-
rameterisation, simple applications in report generation, and library facilities. The last of
these, library facilities, requires special purpose machinery that depends on the operating
environment in which the macro processor is embedded. There is a case for having two
kinds of library — one for pieces of text and one for pre-compiled macro definitions.

In the remaining four fields any macro processor containing macro-time looping state-
ments and macro-time conditional facilities should be adequate, although a special-purpose
macro processor will be limited to generating text in its base language and a macro proces-
sor that requires each macro call represent a base language statement will be considerably
less useful than a macro processor not having this restriction. Fletcher [12] supplies a very
interesting example of the power of a macro processor in the field of text generation, and
Magnuson [31] further examples in a paper containing several ingenious and potentially
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very useful examples of the capabilities of a macro processor. Keese [27] shows how a macro
processor can aid in the automatic production of documentation.

7.4 Conclusions on Editing and Searching

A macro processor must be notation-independent if it is to be used to any great extent for
systematic editing and searching, but if it is notation-independent it can be a very powerful
tool in this field. If the capabilities of macro processors in the field of systematic editing
are compared with those of a context editor then the following points arise:

a. Context editors should be easier to use since they are specially designed for editing.

b. Magcro processors are not good for making isolated changes in text but are only useful
for systematic changes.

¢. Macro processors may be superior in applications where they can take advantage of
their subsidiary features. As specific examples to give an idea of what is meant by this
assertion, a macro processor might be capable of identifying the following entities in a
program, whereas a context editor would not: (i) array bounds that are integers greater
than some specified value; (ii) declarations of logical variables and all subsequent uses
of these variables.

7.5 Final Conclusions

Macro processors have a very wide range of applications, and the first consideration in
the design of a macro processor is whether to aim for the largest possible generality or
to concentrate on one area and to provide facilities that are especially suitable for that
area. Both approaches have been successful. In the case of a macro processor with general
capabilities, a great deal of power can be gained using relatively few primitive operations
and the range of applicability often turns out to be considerably wider than that envisaged
by the original designer. In fact it is often something of a game to try to reduce the
number of primitive operations to an absolute minimum. Overall, the ratio of usefulness to
implementation effort required is higher for macro processors than for most other software.

The greatest contribution that can be made by macros in the future is probably in
the area of standardisation. It is almost impossible to agree on a standard programming
language, but it may be possible to agree on a standard base language and a standard macro
processor to allow extension of this language. Although a good deal of work has been done
on the design of macro processors, very little has been done on the design of base languages
that are easy to expand. Indeed, this aspect of the design of a language has often been
completely ignored in the past. In future, as the computer attracts more and more lay users
in more and more diverse fields, this aspect must receive more attention.
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8 A Critique of ML/I

It is the purpose of this Chapter, which is the only Chapter in Part II of this discussion, to
perform the following functions:

a. to examine what is new about ML/I and what it has derived from other macro proces-
sors.

b. to state the deficiencies of ML/I and how they might be remedied.
c. to consider briefly how ML/I works.

d. to mention some applications of ML/I.

The ML/T User’s Manual, which describes ML/T in full detail, is included as Appendix A.

8.1 Innovations in ML/I

The main feature of ML/I, by which it stands or falls, is its facility for delimiter structures.
This facility has never been offered before. Other attempts to accomplish the same end,
namely to allow the user to design his own notation for macro calls, have been discussed
in Chapter 3. Broadly speaking the advantage of ML/I over systems such as XPOP and
LIMP, which have different notational mechanisms, is that ML/I is suitable for applications
where it is required to nest macro calls within macro calls or to have macros with a large
number of possible forms, each requiring a different replacement. XPOP and LIMP, on the
other hand, are more suitable than ML/I in applications where macro calls can conveniently
be written one to a line and are hence never nested within one another.

As well as making it possible for users to communicate with the machine in their own
terminology, the notational flexibility made possible by delimiter structure has another ad-
vantage. This advantage is that it makes ML/I notation-independent. As was explained in
Chapter 3, notation-independence opens up a new vista of applications for macro proces-
sors in such fields as editing and symbol manipulation. Every notation-independent macro
processor has its failings, but ML/T has considerable advantages over the “one call to a line”
macro processors for a large number of applications.

The basic concept of a macro as in ML/I is not new and in this respect ML/I belongs
to the family of macro processors consisting of GPM, TRAC and 803 Macro-generator. Of
these ML/I has leaned most heavily on GPM.

Another new feature of ML/I is its skips. These are a generalisation of the literal
brackets used in GPM. Skips allow the user to inhibit macro replacement within contexts
defined by himself.

Inserts in ML/I are not new but combine into one mechanism a number of facilities
that have been available in macro processors for some time.

Macro-time statements in ML/I are also not new and represent a cross between the
ideas of GPM and the PL/I Macro Processor.
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8.2 Defects of ML/I

The most obvious defect of ML/I is its slowness. This is nothing unusual in a macro
processor or indeed in any text manipulation processor, but it does limit its usefulness for
some applications. The most wasteful activity in ML/I is the interpreting of the macro-time
statements MCSET and MCGO every time they are performed. However if these statements
were to be compiled, it would necessitate some restrictions in ML/I which, though not
taxing in practice, would be aesthetically unpleasing and would make the User’s Manual
longer and more complicated.

ML/I is clumsy in dealing with text where macros are written one to a line and not
in prefix notation, but there exist macro processors, for example LIMP and WISP, that
are very good for this type of application and ML/T fairly neatly complements the facilities
offered by these macro processors, since these latter are clumsy in dealing with text where
macro calls are not written one to a line.

Another defect of ML/I is its lack of character variables, or put another way, its lack
of a facility to redefine a macro and throw the old version away. This facility would not be
very difficult to add to ML/I, at least in a restricted way.

Defects that are more defects of individual implementations than of ML/I itself are the
lack of a facility to divide the output into separate streams, the lack of a library facility
and the lack of a convenient facility for overriding all the operation macro definitions within
certain contexts, thus making ML/I capable of editing text involving operation macro calls,
i.e., of editing instructions to itself.

It is often said that a language should be such that what is easy to write is easy to
process and those operations which require complicated and time-consuming processing
should be complicated to write, thus forcing the user, through his own laziness, to use the
language in the optimal way. It can, therefore, be held as a defect of ML/I that it is very
easy to define more and more macros, involving deeper and deeper nesting, with the result
that macro processing becomes excessively slow. In many practical cases the slowness of
ML/I in performing a task has been due to the unnecessary use of its most time-consuming
facilities and these applications can be speeded up by an order of magnitude by judicious
changes.

Lastly an irritating feature of ML/I is that it is necessary for the user to be very careful
with layout characters (i.e., spaces, newlines, etc.). This applies to all general-purpose macro
processors and is something the user must live with. However in future versions of ML/I
the problem will be slightly alleviated by using keywords to stand for these characters when
they are needed in structure representations and ignoring the layout characters themselves.
With hindsight, it is now clear that it would have been better to use a newline rather than
a semicolon as the standard closing delimiter for operation macros.

8.3 The Logic of ML/I

Like most other general-purpose macro processors, ML/I makes only one pass through
the source text. The input routine for ML/I normally reads the source text character by
character or line by line, and source text is not retained inside the machine after it has been



Chapter 8: A Critique of ML/I

evaluated. There are only a few features of the logic of ML/I that are worthy of special
comment.

Firstly it should be mentioned that one important factor in the development of ML/I
has been that it should remain small enough to operate on the PDP-7. Thus features
have not been added unless they represent solid improvements and could be implemented
fairly easily. This smallness of ML/I means that ML/I can, when appropriate, act as a
co-routine with other processors. Mr. T.C. O’Brien of Honig Associates states, in a private
communications, “I view the macro processor as belonging in the ‘card reader’ or ‘printer’
category rather than as a preprocessor. Furthermore, it should be possible to stack several
different translators, one behind the other, without the use of an intermediate file”. This is
a view I fully support and is a powerful argument for a macro processor to be small.

The requirement for compactness was one reason why list processing techniques were
not used in the logic of ML/I. Instead dynamic storage allocation is provided by two stacks,
one stack working forwards and the other backwards (see Section 2.8 of Appendix B).
Character strings are stored contiguously. This method is much faster than list processing,
especially on machines that have instructions for moving about or comparing contiguous
blocks of data, but it does, of course, make ML/I hard to extend in some directions. Many
of the most useful features in LIMP, for example, depend on the use of list processing
techniques. Nevertheless the decision not to use list processing techniques in ML/I has not
been regretted.

It has been found from tests on the PDP-7 implementation of ML/I that the most
time-consuming activity in ML/I is the comparison of each atom of the scanned text with
all possible macro names. This is in spite of the use of hashing techniques (see Section 6.2.3
of Appendix B). As a result of these tests, the speed of the PDP-7 implementation has
been improved by enlarging its hash-table, and it is certainly wise to make hash-tables as
large as is reasonably possible, subject to the storage available. With a hash-table of 64
entries each atom will, in an average job, need to be compared with only one or two possible
macro (or other construction) names and this sort of overhead is quite reasonable. However
the hash-tables should not be made excessively large since the logic of ML/I is such that
there may be as many as four hash-tables in existence at any one time, and, in exceptional
applications, more than this.

Nothing else in the logic of ML/I is unusual or worthy of special comment.

8.4 Uses of ML/I

Some of the uses to which ML/I has been put are indicated in Chapter 7 of the User’s Man-
ual and in the published paper describing ML/I [4]. The uses outlined in these publications
include the implementation of a language to describe fields within data structures, the com-
pilation of arithmetic expressions, the partial conversion of FORTRAN IV to FORTRAN II,
and a number of applications in text generation, searching and systematic editing. Further
uses of ML/I have been in conventional macro-assembly, the implementation of application-
oriented languages, symbolic differentiation, the extension of Titan Autocode (see Hopewell
[22]), the conversion of Elliott ALGOL I/O statements to those of another ALGOL dialect,
and the conversion of a program from PDP-7 Assembly Language to Titan Assembly Lan-
guage.
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As a result of the published paper on ML/I, over sixty computer installations have
expressed interest. These include computer manufacturers, industrial organisations, uni-
versities and research establishments and between them they cover a very wide range of
applications.
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9 The Use of Macro Processors in Implementing
Machine-Independent Software

9.1 Introduction

There are at least three internationally accepted machine-independent high-level languages
in which algorithms involving purely numerical manipulations can be encoded. Since com-
pilers for one or more of these languages are available on most machines in the world and
since it is a relatively easy (though by no means trivial) operation to transliterate between
these languages, once an algorithm has been described in one of the languages it is readily
available to anyone else who finds it useful. Moreover compilers for these algebraic languages
are entirely satisfactory for the description of numerical algorithms.

However for algorithms involving a fair amount of non-numerical manipulations, and in
particular for the description of software, suitable high-level languages are much less widely
accepted and when compilers for these languages exist they tend to generate very slow,
highly interpretive, object code for non-numerical features. Since software is heavily used it
must be implemented in as efficient a manner as possible. Hence, because of the defects of
high-level languages, nearly all software is coded in assembly languages or other machine-
dependent languages, and if a piece of software has been implemented on one machine and
it is required to implement it on a second machine, it has to be completely re-coded for
the second machine. This involves a good deal of time and manpower. Various special-
purpose languages for software writing have been designed to try to alleviate this problem
but none of them is widely accepted and most either are machine-dependent or generate
inefficient object code or both. Similarly general-purpose software-writing systems, such as
the Compiler Compiler, suffer from both these defects.

9.2 Discussion of Machine-Independence

The importance of machine-independence can, however, be over exaggerated. A lot of
software, particularly supervisors, is highly machine-dependent and hence there is no merit
in trying to describe it in a machine-independent way. In fact the question of deciding
whether the logic of a piece of software or, for that matter, a programming language, is
machine-independent is always a tricky one. Strictly speaking it is impossible to say that the
logic of any software is machine-independent; all that can be said is that it appears to work
for all or nearly all the machines that are in existence at the present moment. Hence any
discussion of machine-independence must necessarily be couched in rather inexact terms.

9.3 Simple Criteria for Machine-Independence

Two necessary, but not sufficient, conditions that software must satisfy to be considered
machine-independent in its operation are:

a. The form of its input and output must be independent of the machine on which it runs
(except for minor differences in character set, etc.).

b. It must be reasonably small, i.e. small enough to fit in the core storage of all but the
smallest machines.
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Compilers fail both these conditions. Firstly the output from a compiler should be (apart
from very specialised exceptions) the object code of the machine on which it runs. Hence
condition a) is not satisfied. Secondly compilers are normally large and the design of a
compiler for a small machine will be completely different from the design of a compiler
for the same language on a large machine. Hence condition b) is not satisfied. Therefore
the most one can hope for in designing a compiler is to design parts of it in a machine-
independent way and the same applies, a fortiori, to supervisors.

However the types of software that take streams of characters as input and gener-
ate streams of characters as output usually satisfy the above conditions and are usually
machine-independent in their operation. Examples include editors, macro processors and
processors for symbol manipulation languages. However even these will normally involve
some operations that are best described in a machine-dependent way. Examples are I1/0,
type conversion and hashing functions.

9.4 The Problem

To sum up the preceding material, there exists a good deal of software (or parts of soft-
ware) that is machine-independent in its operation, and it is desirable to describe it in
a machine-independent language and to use a mechanical translation process to generate
implementations for all the desired object machines. However existing compilers are not
suitable for performing these translations for one or more of the following reasons:

a. The language that is compiled is not suitable for describing software.
b. Compilers are not available for many machines.

¢. The generated object code is inefficient.

9.5 A Method of Solution

It is the purpose of this Part of the discussion to describe an alternative to the use of a
pre-defined high-level language for the description of software. This alternative method
removes all three of the above difficulties. The method is called a DLIMP, which stands for
Descriptive Language Implemented by Macro Processor.

Assume therefore that some software S is machine-independent and it is desired, or it
is thought that it may be desired in the future, to implement it for several machines. If it
is decided to accomplish this by a DLIMP using ML/I the procedure is as follows.

A descriptive language for S is designed. This will be represented as DL(S). DL(S)
is a machine-independent language with semantics designed especially for describing S and
with syntax designed to be translatable by ML/I into the assembly language of any machine
and preferably into any suitable high-level language as well. Hence if, for example, S used
a dictionary, the semantics of DL(S) would provide facilities for accessing dictionaries.
Furthermore the data types in DL(S) would be those required for the description of S.
Hence if S was implemented by list-processing techniques, DL(S) would have list data.

If it is desired to implement S on a machine M the first step in the process of imple-
mentation is to select an object language. The object language is some language for which
a compiler or assembler exists for M and into which DL(S) can conveniently be translated



Chapter 9: The Use of Macro Processors in Implementing Machine-Independent Softwareb4

using ML/I. In practice the object language is normally the assembly language for M. When
the object language has been chosen, mapping macros are written to make ML /I map DL(S)
into the object language and these macros are used to map the logic of S as described in
the language DL(S) into an equivalent description in the object language. This descrip-
tion in the object language is then compiled or assembled for M and this completes the
implementation of S on M.

Note that the mapping of DL(S) into the object language can be performed on any
machine for which an implementation of ML/I exists. It will often be convenient to perform
the mapping at the installation where the designer of S works rather than on the object
machine.

The technique described above has been used in practice, with S as ML/I itself, and
most of the rest of this discussion is devoted to describing and evaluating this operation.
Appendix B contains a complete implementor’s manual for performing this operation. The
language DL(ML/I) is called, simply, L and the operation of using ML/I to translate the
logic of ML/I from L into some object language is called an L-map. L-maps have been
performed for several object machines. When ML/T is first implemented on a machine the
L-map must, of course, be performed on a different machine, but after an implementation
of ML/I has been generated, this can be used to generate improved implementations for
the same machine.

9.6 Advantages over Use of High-Level Languages

Three possible disadvantages of describing software in a high-level language were quoted
earlier and it was claimed that a DLIMP overcame these. Now that the technique has been
described this claim will be examined in detail.

The first disadvantage, the fact that the language may be unsuitable, clearly does not
apply since a descriptive language is specially designed for the purpose it is to serve.

The second disadvantage, the fact that compilers may not exist for many machines,
is overcome by the fact that any implementation of ML/I can be used to translate the
descriptive language. There is no requirement that there be an implementation of ML/I on
the object machine.

The third disadvantage is that compilers are liable to generate inefficient object code.
However a descriptive language will be made to contain statements (or other syntactic
classes) specially designed for performing the most heavily used operations in the logic
of the software it describes and since each statement in the descriptive language will be
mapped into specially tailored object code, the resultant implementation of the software
will be quite efficient. In other words a DLIMP, being special-purpose, will generate better
code than a general-purpose method. This is best illustrated by an example. Assume that
the logic of some software uses data structures of a particular form. If the logic is encoded in
a pre-defined high-level language, this language may have a general data structure facility
but, being general, it is unlikely that it would be especially efficient for describing the
particular data structure required. However if the software were implemented by a DLIMP
the descriptive language would have statements specially designed for manipulating the
particular kind of data structure required, and each of these statements would be mapped
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into specially designed object code, which will perform its task in the most efficient possible
way.

It is, therefore, the central contention of this discussion that it is better to tailor the
software-writing language to the software rather than vice versa.

9.7 Advantages over Hand-Coding

The use of a DLIMP has many advantages over the method of describing software by means
of, say, flow charts and then encoding it by hand for each object machine, though hand-
coding will result in slightly more efficient object code. The main advantages of the use
of a DLIMP are that it requires fewer man hours, it eliminates coding errors, it can be
used to generate software for a newly manufactured machine with no software of its own
and it makes trivial the upgrading of the generated software when a new version becomes
available. This represents a fairly solid list of advantages and a DLIMP has its attraction
even for describing machine-dependent software that is only required for one object machine.
It may well be preferable to abandon assembly language coding in favour of the use of a
good descriptive language that is both easy to read and easy to write, even allowing for the
overheads of building up such a language. Indeed macro-assemblers have often been used
in practice to accomplish this end.

9.8 Further Mappings

Now that one descriptive language, namely L, has been defined and mapped into several
different object languages, it will be much easier to design future descriptive languages and
map them into the same object languages. This is because, although many of the features
of L are specially oriented to describing ML/I, L contains a kernel that will be applicable
to any descriptive language. Thus if a descriptive language is required for describing some
other software, this descriptive language can be derived from L by deleting the features of
L that are only applicable to describing ML/I, and replacing them by features applicable
to the software concerned. When mapping the new descriptive language into any of the
object languages into which L has been mapped it will only be necessary to write mapping
macros for the new features since the mapping macros common to L and the new descriptive
language can be re-used.

In this context Wilkes’ concept of inner and outer syntax [41] is very relevant. It will
probably be possible for all descriptive languages to share the same outer syntax, and, with
luck, some features of the inner syntax, arithmetic expressions for instance, can also be
shared.
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10 The Language L

This Chapter describes the language L and how it is used to describe ML/I.
The logic of ML/I is divided into two parts:

a. The MI-logic, which is the machine-independent part that can be mapped into each
desired object language by means of an L-map.

b. The MD-logic, which is the machine-dependent part that requires hand-coding for each
implementation of ML/I.

Typically the encoding of the MD-logic turns out to be one sixth of the size of the MI-logic.

The operation of implementing ML /I by means of an L-map is represented diagrammatically
in Figure 1.

Inputs: Mapping macros to MI-logic of ML/I
translate L into described in L
the object language I

e + e +
I I
v V'
Fommmm +
Any machine: | ML/I |
Fommm +
I
Output: v
I
MI-logic of ML/I MD-logic of ML/I
Inputs: mapped into hand-coded in
object language object language
I I
e + e +
I I
v v
e +
Object machine: | Assembler or compiler |
| for object language |
e +
I
I
v
Output: Implementation of ML/I

on object machine

Figure 1
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10.1 Basic Details of L

The full description of L appears in Appendix B and this Chapter will confine itself to
describing the most important features of L.

L has been designed to be as readable as possible and furthermore it has been designed
in such a way that it should be possible to map it into a suitable high-level language as
well as any assembly language, so that if an object machine has a compiler for a high-level
language that is suitable for describing the logic of ML/I, then it will be possible to map L
into this language rather than into assembly language. Mapping into a high-level language
would represent a “quick and dirty” way of implementing ML/I, unless, of course, the object
machine possessed that rare animal, a high-level language suitable for software description
that compiled into efficient code. In this latter case it would be “quick and clean” and
hence would be a very desirable operation.

The most important characteristic of any language is the types of data that it allows.
L has four data types, namely character, pointer, number and switch. The first three of
these are self-explanatory. Switches are logical variables that can take on the value zero to
seven. In each L-map data types are represented in the way most appropriate for the object
machine.

L allows for variables, constants, and indirectly addressed data (i.e., data accessed by
means of a pointer) of each data type. There are polymorphic operators in L but the data
types of operands can be ascertained during an L-map by examining the last two letters
of the identifiers, etc., used to represent the operands, so that there is no need to relay
this information from declaration to point of use. Thus switch variables have names like
INSW, DELSW, etc., and pointer variables have names like FFPT, DELPT, etc. L is in
this respect similar to FORTRAN II since FORTRAN II uses the first character of variable
names to indicate their data type.

L allows data of type number or of type pointer to be combined into arithmetic expres-
sions, though it was found that only the addition and subtraction operators were necessary.
L also has logical and comparison operators.

The Ml-logic of ML/I is divided into several separate units called SECTIONs. In
particular one SECTION contains exclusively declarations of variables and a pair of SEC-
TIONSs contain exclusively definitions of the tables of data used in the MI-logic. These
tables of data contain the names and delimiters of the operation macros and some infor-
mation about them. The two SECTIONSs containing these tables are called collectively the
data SECTIONs. The remaining SECTIONSs contain exclusively executable statements.

L allows a set of declarations of variables to be combined into a contiguous block. A
block of variables is a concept somewhat similar to the structure found in COBOL. There
are no arrays of variables in L.

Most of the executable statements in L. are simple statements, written one to a line.
There are however two executable compound statements; one is an IF statement similar to
that of ALGOL and the other is a statement for following down a chain and executing a
given set of statements for each link of the chain.

In addition L contains statements for controlling the layout of the object language and
facilities for comments. Each of these factures can, if desired, be ignored on an L-map if
the readability of the object code is not considered important by the implementor.



Chapter 10: The Language L

Figure 2 contains a short extract from the description of the MI-logic of ML/I in L,
showing two of the subroutines in the MI-logic, in order to give the reader some flavour of
the language. If the meanings of the statements are not intuitively obvious, reference can

be made to Appendix B for a full explanation.

SUBROUTINE GTATOM

[GT2]

IF LEVEL = 0 & SKVAL GE 0 & FFPT-SPT = OF(LCH) THEN
SET FFPT = INFFPT
SET SPT = FFPT-QOF (LCH)

END

CALL ADVNCE EXIT ENTEXT

IF IND(SPT)CH = ’$’ THEN /-0VP-/SET LINECT = LINECT+1

SET IDPT = SPT

SET IDLEN = OF (LCH)

CALL MDTEST(SPT)PT EXIT GT3

CALL ADVNCE EXIT ENDID

CALL MDTEST(SPT)PT EXIT ENDID

SET IDLEN = IDLEN+OF(LCH)

GO TO GT2

//END OF IDENTIFIER//

[ENDID] SET SPT = SPT-OF (LCH)

[GT3]

ENDSUB

RETURN FROM GTATOM

SUBROUTINE LUDEL(PARPT) EXIT //DELIMITER NOT FQOUND//

CHAIN FROM PARPT EXIT MACERR
CALL CMPARE (CHANPT+QF (LNM) )PT EXIT LDCNT
GO TO LDSUC

[LDCNT] ENDCH

EXIT FROM LUDEL

[LDSUC] RETURN FROM LUDEL

ENDSUB

Figure 2

10.2 The Mapping of L

L contains thirty different kinds of statement, and mapping macros need to be written for
all of these statements for each L-map. It has been found in practice that the mapping
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macro for a statement in one L-map often has much the same form as the mapping macro
for the same statement on another L-map, and so each L-map tends to involve a little less
work for the implementor than the previous L-map. In addition to the mapping macros
for statements, it is necessary to write mapping macros for machine-dependent constants,
for indirect addresses and for arithmetic expressions. The writing of these last two requires
a fair amount of skill and aptitude in using ML/I. Typically it takes about six weeks to
write and debug a set of mapping macros. It is usually convenient, though not logically
necessary, to perform L-maps using three separate passes (see Chapter 8 of Appendix B).
The descriptions of the L-maps performed so far are presented in Chapter 12.

In order to give the reader an idea of what mapping macros look like, two examples
will be given of the mapping macro for the simplest statement in L, the GO TO statement,
which has the form

GO TO label

The standard conventions observed in the ML /I User’s Manual (see Section 2.11 of Appendix
A) will be used in these examples. The L-maps concerned are described in Chapter 12.

Example 1
Mapping macro for the L-map into PDP-7 Assembly Language:

MCDEF GO WITHS TO
AS< JMP ~A1.
>-

3

Ezample 2
Mapping macro for the L-map into IIT for Titan (where label names are mapped
into numbers on a prepass):

MCDEF GO WITHS TO
AS< 121 127 0 "Al.
>-

J

10.3 Features of L That Specially Aid
Machine-Independence

In many ways L is very similar in form to ordinary high-level languages, but it does contain
two special features that are relevant to its use as a language to aid machine-independence.
These features are its constant-defining macros and its statement prefives. Each of these is
explained below.

10.4 Constant-Defining Macros

The logic of ML/I involves many machine-dependent numbers and markers. These are
represented in L by constant-defining macros. On each implementation of ML/I these
constants are mapped into appropriate values for the machine concerned. The most heavily
used constant-defining macro is the OF macro, which is described in detail in Section 3.3.1 of
Appendix B. The OF macro is used to define constants that depend on the number of units
of storage occupied by the various data types used in the logic of ML/I so that the offsets
of items on stacks are represented correctly. Thus on IBM System/360 a pointer would
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occupy four units of storage (i.e., four bytes), and if the value of a pointer was placed on a
stack the stack pointer would need to be increased by four. On a completely word-oriented
machine, on the other hand, a pointer would normally occupy only one unit of storage.
(The amounts of storage occupied by data of the various types for an implementation are
determined by the way in which the statements of L. that declare or manipulate data are
mapped.)

The sample of the MI-logic that was shown in Figure 2 contains several uses of the OF
macro. It also includes an example of the constant-defining macro that denotes character
constants. This macro has a single quote as its name and a single quote as the closing
delimiter of its one argument. (See Section 3.3.2 of Appendix B for a fuller description of
this macro.)

10.5 Statement Prefixes

The most necessary feature of any exercise in machine-independence is flexibility. In the
next Chapter the advantages of ML/I in this respect are discussed. However when the
language L was designed a further element of safety was added by making L itself flexible
by means of statement prefixes. These are used to add extra information, of interest in only
one L-map (or perhaps in only a small proportion of L-maps), to statements in L. without
upsetting other L-maps. Statement prefixes are normally used as an aid to generating
optimal code for a particular machine or machines. An example follows.

10.6 Example of a Statement Prefix

Assume that it is desired to map L into the assembly language of a machine M. Assume
further that the order code of M includes a special instruction which can be used to increase
the contents of a storage location by a constant provided that the contents of that storage
location is positive, whereas in the non-positive case it is necessary to use a sequence of
several instructions. (A rather similar situation to this arises in practice withe the “Load
Address” instruction on IBM System/360.) Now the MI-logic of ML/I contains statements
such as

SET IDLEN = IDLEN + 1

and it would be useful if the mapping macros for the SET statement for M could be given
the information on statements such as the one above as to whether IDLEN was always
positive. This would enable optimal code to be generated in the positive cases.

The obvious solution to this is to change L by introducing a new statement called,
say, “SETPOSITIVE” to deal with cases such as the one above. However this solution
is unsatisfactory since a change in L. would upset all other existing L-maps. Instead the
problem is overcome by adding a prefix, “POS” say, to the SET statement and enclosing
this within the delimiters “/-” and “-/” to make it a statement prefix. Thus the above SET
statement would be written, in the case where IDLEN was always positive, as

/-P0S-/ SET IDLEN = IDLEN + 1

The addition of statement prefixes does not upset existing L-maps since every L-map is
required to delete statement prefixes by means of the following ML/I “skip”:
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MCSKIP / WITH - - WITH /;

This all-embracing skip can be overridden for each of the individual statement prefixes that
it is desired to recognise on a particular L-map but it ensures that any new statement
prefixes introduced into the logic of ML/I after the L-map was written do not upset the
L-map when it is performed again on the new logic.

Hence the only problem for an implementor who wants a new statement prefix is to
persuade me, as the writer of the MI-logic of ML/I, to add the statement prefix in the
appropriate places. If I consent, the required information is available to the implementor
who requested it and in any future L-map where it may be found useful.

Figure 2, which was presented earlier in this Chapter, contains an example of a state-
ment prefix called “OVP” which is used for a slightly different purpose to the one suggested
above; OVP means that arithmetic overflow is possible.
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11 Comparison with Other DLIMPs

It is the purpose of this Chapter to describe some other DLIMPs that have been performed,
using macro processors other than ML/I, and to discuss some of the advantages in using
ML/TI to perform a DLIMP. Firstly the considerations that go into the design of a descriptive
language will be discussed, since this is of relevance to all DLIMPs.

11.1 The Design of a Descriptive Language

When designing a descriptive language it is a matter of judgement as to how complicated it
should be made. The amount of effort required to write a set of mapping macros depends
on the complication of the descriptive language.

At one extreme a very simple descriptive language could be designed, for example a
language with semantics the same as a Turing machine. This would be very easy to map
but would result in hopelessly cumbersome and inefficient object code.

At another extreme the descriptive language could be made to involve very complicated
operations and/or a very large number of operations, in which case, although the description
of the software to be implemented would be made simple and/or short and the resulting
object code efficient, the mapping macros would require a considerable effort to write and
the writing of them would be a little different from hand-coding the entire software. In
the absolutely extreme case the entire software would be defined by the replacement of one
macro.

However if some sensible middle course is taken and some reasonable balance is made
between object code efficiency and ease of transfer, a DLIMP can be a very useful and
time-saving operation.

11.2 Other DLIMPS

In addition to the implementing of ML /I by an L-map, a number of other DLIMPs have been
performed, though only one of them has been described in the literature. These DLIMPs
are described in the next sections.

11.3 Implementing of SNOBOL

The implementing of the symbol manipulation language SNOBOL4 has been performed
using the Macro-FAP and similar macro-assemblers. The descriptive language used consists
of 130 different types of statement, each corresponding to a FAP macro.

The notation of FAP can be converted, with a little editing, into the notation of
most other macro-assemblers. Hence in order to implement SNOBOL (or rather most of
SNOBOL, since some hand-coding is always necessary in this kind of exercise) for a given
object machine, the implementor converts the description of the SNOBOL processor from
FAP notation to the notation of the object machine’s macro assembler and then writes
130 macros to define the machine code that is to replace each of the statements in the
descriptive language. Using this technique SNOBOL implementations have been completed
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or are being performed for the following machines: IBM 7090, CDC 6600, IBM System/360,
Titan.

However the system is still under development and, as yet, no published description
exists.

11.4 Implementing of Meta-Assemblers

Ferguson [11] has described a descriptive language called METAPLAN that has been used
to describe meta-assemblers. In order to implement a meta-assembler to run on a given
object machine the first step is to make an existing meta-assembler capable of acting as
an assembler for the object machine. When this has been done macros are written to map
METAPLAN into the assembly language of the object machine. These macros are run
on an existing meta-assembler or on a specially written macro processor. They perform
the mapping of the logic of a meta-assembler in METAPLAN to an equivalent description
in the assembly language of the object machine. This is then assembled by the meta-
assembler that has been made to act as an assembler for the object machine. Full details
of this work have not been published (though Ferguson has been kind enough to send me a
rather more detailed account of the operation than appears in his original paper), but the
technique has been used to implement meta-assemblers for a number of machines. It can
be seen that Ferguson’s technique is very similar in concept to an L-map but it is rather
more specialised in that it requires that the object language be a meta-assembly language
whereas there is no such restriction on an L-map. However Ferguson points out that it
is quite a trivial operation to make an existing meta-assembler capable of assembling for
almost any machine.

11.5 DLIMPs Using WISP

It is not, perhaps, generally realised that the WISP compiler is simply a macro processor.
It so happens that most users of the WISP compiler use a built-in set of standard forms
(i.e., macros) which have come to be known as the WISP language. However the user of the
WISP compiler not only can supplement these built-in standard forms but he can throw
them all away and replace them by a completely different set. Hence the WISP compiler is a
suitable vehicle for performing DLIMPs and, indeed, several DLIMPs have been performed
using it, including:
a. The implementing of the WISP compiler using the WISP language as descriptive lan-
guage.
b. The implementing of LIMP using an extended version of the WISP language as de-
scriptive language.

c. The implementing of AMBIT (a symbol manipulation language) using a modification
of the WISP language as descriptive language.

Case a) is the only DLIMP that has been described in the literature and Wilkes’ account
of it [40] is well worth reading. In this DLIMP the descriptive language was developed
as much as a language in its own right as a language for describing the WISP compiler.
However, if a language can satisfactorily serve such a dual purpose it is all to the good.
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The emphasis of Wilkes’ article is as much on the bootstrapping aspect, i.e., the use of an
existing WISP compiler to generate a more powerful WISP compiler for the same machine,
as on the transfer from machine to machine.

Cases b) and c) are, however, more perfect examples of DLIMPs since in these cases
the descriptive language was developed specially to describe the software concerned.

11.6 Comparison with Other Methods

It is a feature of a DLIMP that it can be used for any machine-independent software and it
places no constraints on the logic of the software to be implemented. Software implemented
by a DLIMP runs completely independently of the macro processor used to implement
it. Relative to other automated methods of software implementation a DLIMP is fairly
unambitious in that the implementor is left to do a good deal of work for himself; he gets
no help in the design of the logic of the software and he has to write mapping macros for
each object language. In order to set DLIMPs in perspective it is worth mentioning some
more specialised, more ambitious, techniques for software implementation.

Firstly there are a number of techniques where a general-purpose processor is made to
act as the software it is desired to implement. Under this heading come syntax-directed
compilers and Halpern’s [18] proposed use of a macro processor as a general-purpose com-
piler. In systems such as these the implementor is relieved of some of the work of designing
the logic of the software he wants to implement, but the logic of the software is constrained
to work on the principles round which the general-purpose processor has been designed.

Secondly the well known technique of “writing a compiler in itself” should be men-
tioned. The best-known example of this is provided by NELIAC [20]. In order to transfer
a compiler to a new machine it is necessary to change the compiler itself in order to make
it generate code for the new machine. Thus transferable compilers are organised in such a
way that this change is relatively easy to make. Apart from this special consideration the
writing of a compiler in itself is merely an example of describing software in a pre-defined
language.

These two techniques have been mentioned merely to point out their differences with
DLIMPs and they will not be considered in the rest of this discussion. Since both of the
techniques have entirely different objectives from DLIMPs, there is no point in trying to
compare their relative merits with DLIMPs.

11.7 Advantages of using ML/I for a DLIMP

It can be seen that there is nothing conceptually new in the idea of a L-map since several
other DLIMPs have been performed, some of them before ML/I was even conceived of.
However the difference between one DLIMP and another lies in the macro processor used
to perform it. It is felt that ML/I offers considerable advantages in this respect in terms
of both flexibility and power, and this makes ML/I a practical tool for converting a wider
range of software to a larger number of machines. These claims about the flexibility and
power of ML/I will be discussed in the rest of this Chapter. However the best way to judge
claims such as these, especially in the field of machine-independence, which is notorious
for glib unsubstantiated claims, is by the results. In the field of machine-independence,
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projects often seem sound and well-planned but fail because of a number of trifling details
overlooked in the overall plan. The results of L-maps using ML/I are presented in Chapter
12 and it is these that really prove the success of the technique.

11.8 Flexibility

As has been said, the most important feature that a scheme for machine-independence must
possess is flexibility. Each object machine and each object language has its own individu-
alistic quirks and one can never find out the troubles that will arise in an implementation
for a particular machine until one actually starts working on that implementation.

ML/T offers considerable flexibility because it is notation-independent and because it
allows a free choice as to which features of the descriptive language need mapping in a
particular implementation and which can be left unchanged. This second point is worthy
of example. In the language L names of labels and variables are represented by identifiers
of six or fewer characters. On most L-maps that have been performed these names were
left unchanged since such identifiers were legal in the object language. However in one L-
map the object language only permitted five-character identifiers for names of labels and in
another case the object language was purely numerical and all identifiers had to be mapped
into numbers. In each of these two cases it was possible to write macros for ML/I to make
it capable, on a pre-pass, of recognising all those identifiers that required alteration and
generating macro definitions that would make the required changes on a subsequent pass.

The flexibility of ML/I is borne out by the fact that on all the L-maps that have been
performed it has never been necessary to make any modifications to ML/I or to the compiler
or assembler for the base language. (In the only other published description of a DLIMP
[40], the assembler for at least one of the object machines, the Elliott 803, required special
modification. This was because the 803 assembler requires labels to follow rather than to
precede the statement to which they are attached. ML/I could perform this transposition
quite easily.)

11.9 Power

It is claimed that ML/I permits the use of much more powerful descriptive languages than
has previously been possible, and it is hoped that a glance at Figure 2 of Chapter 10 will
convince the reader that the language L is akin to a high-level language in that it is easy to
read and easy to write. In fact L. has been mapped with comparative ease into a high-level
language (PL/I) whereas no attempt has been made to map any other descriptive language
into anything other than an assembly language.

Two facilities of ML/I are especially relevant in giving it extra power, namely its
delimiter structures and the allowing of macro calls within macro calls. The use of delimiter
structures leads to features of L such as its elaborate IF statement and its arbitrarily long
arithmetic expressions. The facility for nested macro calls in ML/I makes it possible for
arithmetic expressions in L to occur within many different types of statement. In WISP,
and other logically similar macro processors, this sort of elaboration is impractical because
it would be necessary to enumerate every possible form of each statement; in the case of
L, this would require hundreds or even thousands of standard forms. In fact WISP seems
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to be very suitable for list-processing applications, where it has traditionally been found
acceptable to use statements of a very simple syntax, but in applications where arithmetic is
involved WISP is less suitable. Of course the whole point about WISP is that it is intended
to be a very simple tool rather than a sophisticated one.

The ML/T facility for nested macro calls was found useful when designing L for many
other purposes in addition to arithmetic expressions. Statements in L which include other
statements are the executable compound statement, like the IF statement, and the state-
ments for declaring “blocks” of variables. Macros in L which occur within other statements
include the constant-defining macros and the macro for indirect addressing.

ML/T also allows the use of several different data types within L though there are other
macro processors in which this would be possible.

The fact that ML/I allows, for the same mapping effort as other macro processors, a
descriptive language involving much more complicated statements means that ML/T will
generate much more efficient object code since it is well known that in macro-generated
code the worst inefficiencies occur at boundaries between statements. To illustrate this
point, it would be much easier to generate efficient code from:

SETX=-Y+Z-C+ 1

than from the equivalent statements:

SET TEMP = -Y

SET TEMP = TEMP + Z
SET TEMP = TEMP - C
SET TEMP = TEMP + 1

Unfortunately there have been no published figures for the efficiency of code generated by
other DLIMPs but it is felt that the figures quoted in the next Chapter for the L-maps that
have been performed are very good ones.
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12 Results of Transfers

All current implementations of ML/I have been generated by L-maps. Initially, versions
of ML/I were hand-coded for both Titan and the PDP-7 and these versions were used
to perform the first L-maps. (If the operation of implementing ML/I had originally been
planned as a bootstrapping operation, it would only have been necessary to code one version
by hand.) Each of these two hand-coded versions was written before ML/I had been fully
developed and the Titan version, especially, lacked many of the features that make ML/I
especially suitable for performing an L-map.

In this Chapter the four L-maps that have been completed are described in some detail
and the two L-maps that are under development are more briefly mentioned. These two
incomplete L-maps have reached the stage where, from the evidence of similar L-maps, all
the main difficulties have been found and overcome. Hence it is reasonable to assume that
the completion of these projects, though requiring a good deal of time and effort, would not
reveal any logical difficulties.

Before considering the individual L-maps, it is necessary to mention a few general
points about them.

12.1 Inefficiency

An attempt has been made to measure the degree of inefficiency in size and speed of the
object code generated on each L-map. The inefficiency is measured by comparing the macro-
generated code with the code that would result if a competent programmer were given the
description of the MI-logic of ML /I in L and told to code it by hand in the object language. It
is assumed that this programmer uses no programming tricks nor any techniques dependent
on a knowledge of the innermost internal workings of the logic of ML/I since both of these
should be discouraged in all software writing because of maintenance problems.

Note that the use of the machine-independent language L to describe the logic of
ML/T introduces some inefficiency. For example the original hand-coded version of ML/I
for the PDP-7 made use of the spare bits in a word containing a pointer, but there is no
place for this sort of thing in a machine-independent description of the logic. However
this source of inefficiency, which in any case is very small, has not been allowed for in the
measures of inefficiency that are quoted, since these measures are only intended to give the
extra inefficiency introduced by the use of macro techniques rather than hand-coding in the
implementing of machine-independent software.

Note further that each measure of inefficiency only applies to the particular L-map
that was performed and a second L-map into the same object language might have entirely
different characteristics. The degree of inefficiency is, in fact, partly a measure of the skill
and effort put into writing the mapping macros.

12.2 Time Taken

In the descriptions that follow of L-maps, an estimate is given of the approximate number of
macro calls that has been needed to accomplish this mapping. Current implementations of
ML/I on Titan and the PDP-7 proceed at about two to three thousand calls per minute, and
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it will be found that the average L-map into an assembly language, involving the translation
of the entire MI-logic of ML/I, which consists of about two thousand L statements, takes
about twenty minutes computing time on either of these machines.

In addition an estimate is given, for each L-map, of the number of man-weeks needed to
write and debug the mapping macros. Normally one or two undetected bugs in the mapping
macros still remain when a mapping is performed, but in all L-maps so far performed it
has been easy to correct these errors by hand-editing of the generated object code without
recourse to a second mapping. However it takes an extra week to a fortnight over and above
the times quoted to check out the generated object code for the MI-logic and its interface
with the MD-logic. The PL/I L-map was exceptionally bad in this respect and required
twenty days of debugging on the object machine.

On two L-maps, those into IIT and PLAN, some time was saved by encoding the data
SECTIONSs by hand rather than by macro mapping. This is because the data SECTIONs
are very short and require several special mapping macros, and, at least in the short term,
it is quicker to code them by hand than to write the extra mapping macros. In fact hand-
coding is recommended in Appendix B.

Apart from the data SECTIONs the entire MI-logic has been mapped by macro re-
placement on every L-map. In the description of each L-map an estimate is given of the
number of lines needed to specify the mapping macros, each line normally being a single ob-
ject language instruction, a call of an ML/I operation macro or a call of some intermediate
macro such as one of the macros described in Chapter 8 of Appendix B.

12.3 Representation of Data Types

The most important decision to be taken when planning an L-map is how the four data
types of L are to be represented on the object machine. The way this is done is therefore
specified in the descriptions of L-maps that follow.

In all three L-maps so far performed for word machines (i.e., machines where the
smallest addressable unit is a word rather than a character) all four data types have been
represented in the same way and each has occupied a single word of storage (or, in the case
of Titan, a half-word since this is the smallest addressable unit). In each of these machines
it would have been possible to pack more than one character to a word (or half-word) but
this was never done because the resultant increase in size and slowness of the object code
would more than offset the gain in compactness of the data. The only packing that has
ever been done is on the character string constants used in error messages.

12.4 Acknowledgements
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12.5 The PDP-7 Assembly Language L-map

The Project

L was mapped by me into PDP-7 Assembly Language. This mapping has been per-
formed several times during the development of ML/I and L. Both Titan and the PDP-7
have been used at various times to perform the mapping. The macro-generated PDP-7 im-
plementation of ML/I has been working satisfactorily since March 1967 with a new version
being released in August 1967.

The Machine

The PDP-7 is a word machine with 8K 18-bit words, one accumulator and a very
simple order code. It represents about the smallest possible configuration on which ML/I
can usefully be implemented.

Because of the smallness of the machine, the emphasis of the PDP-7 L-map was on
generating object code that was as concise as possible rather than as fast as possible. Thus
the object code was designed to be very highly subroutined.

Representation of Data Types

All types of data were stored in a single word. Numbers were stored in two’s comple-
ment form.

Difficulties

As an object machine the PDP-7 presented no great problems. Its very simple order
code was an asset. Furthermore the PDP-7 Assembler performed fairly well as an object
language. Its two main deficiencies were that it requires negative numerical constants to
be represented in one’s complement form rather than two’s complement form and that it
contains no usable facility for character string literals or character string data constants.

The Mapping

The PDP-7 L-map was the first L-map to be performed, and, although some of the
mapping macros have been updated, the overall organisation has never been changed from
its original state. From the experience gained from the PDP-7 and Titan L-maps improved
mapping techniques have been developed and if the PDP-7 L-map were now re-planned,
starting from scratch, the mapping could be performed much more quickly and easily.

The PDP-7 L-map was performed in four passes of which the last was simply an
optimiser. The optimiser managed to eliminate about forty redundant instructions from
the object code. Altogether M1/I executed 85,000 macro calls in performing the PDP-7
L-map. About one third of these were taken up by the optimiser and about one sixth in
converting character string literals into numerical values. An effort was made to make the
object code look fairly neat and comments in L. were copied over to the object code.
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Overall it required about 700 lines to specify the mapping macros and it took about a
month to write and debug them.

The Object Code

The generated object code consisted of about 3,500 words, of which about 2,950 were
instructions and the remainder were declarations and data. Thus it required an average
of 25 macro calls to generate each word of object code. The MD-logic for the PDP-7 was
relatively large, being nearly 1,500 words. This was because the PDP-7 has no supervisor
and hence all the I/O routines and interrupt routines had to be included in the MD-logic
and also because the PDP-7 implementation included a lot of extra facilities, including;:

a. The ability to communicate with the user via the teleprinter.

b. The ability to dump itself out on paper tape for later re-use.

c. Its own loader.

d. The ability to perform I/O in either Titan flexowriter code or ASCII.

The object code generated by the PDP-7 L-map represents about the ultimate in object
code efficiency likely to be achieved in an L-map. To test the efficiency of the code certain
parts of the MI-logic of ML/I were encoded by hand with the same design objectives as
the macro-generated code, namely to be as concise as possible, and it was found that the
macro-generated code was about 3% inefficient in size and speed. The speed inefficiency is
relatively unimportant since the PDP-7 implementation is normally I/O bound.

These results are considerably better than are likely to be achieved on many other
L-maps. The reason for the efficiency of the PDP-7 L-map is that the PDP-7 has so few
instructions that there is little scope for clever coding by hand.

Conclusion

The PDP-7 L-map was highly successful and represented a very rare achievement: an
exercise in machine-independence that resulted in only trivial inefficiencies in the generated
object code.

12.6 The IIT L-map for Titan

The Project

L was mapped into IIT, the non-symbolic assembly language for Titan. The mapping
was performed by H. Brown of the staff of the Cambridge University Mathematical Labo-
ratory, and the resultant implementation has been working satisfactorily since June 1967.
The mapping was performed using an early, rather inadequate, version of ML/I on Titan,
which had been coded by hand.

The Machine

Titan is a large word machine with 48-bit words and an extensive, rather inhomoge-
neous, order code. It is possible to address 24-bit half-words. Titan has 90 general-purpose
registers (i.e., accumulators and/or index registers), called B-lines, that are available to the
general user.

Representation of Data Types
All types of data were stored in a single 24-bit B-line or half-word.
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Difficulties
The Titan L-map probably presented more difficulties than any two others put together.

Titan has a very large order code and it takes a lot of work to design macros that pick
the right instruction for the right purpose. If advantage were not taken of Titan’s large
range of special-purpose instructions a program would be very inefficient.

However most of the troubles of the Titan L-map arose because of the inadequacies
of IIT. (This situation has recently improved and Titan now has an adequate symbolic
assembler.) Because IIT is purely numerical, all names in L had to be mapped into numbers.
Other troubles were the lack of character string literals and difficulties arising from the fact
that some constants had to be represented as a decimal integer coupled with an octal
fraction.

The Mapping

The Titan L-map was performed on an old version of ML/I while L was still being
developed. The Titan mapping macros have never been updated to conform with the latest
developments of L and ML/I.

The mapping, which was accomplished in four passes, required 75,000 macro calls. The
mapping macros took two months to write and debug and it took 700 lines to specify them.
(Hopefully all these figures would be cut by a third or more if the Titan L-map was repeated
using the latest version of ML/I and mapping into a symbolic assembly language.)

The Object Code

The MI-logic of ML/I required 2,430 words, of which 2170 were macro-generated in-
structions and 260 were the hand-coded data SECTIONs. The MD-logic required only 370
words, making a total of 2,800.

The generated object code for Titan was about 5% wasteful in size and 25% inefficient
in speed. In order to improve the speed the most heavily used part of the Ml-logic, the
basic scanning loop, was re-coded by hand. This involved hand-coding 50 instructions and
cut the speed inefficiency down to 5%. It was rather fortunate that the number of variables
required in the logic of ML/I was just fewer than the number of B-lines available on Titan
and so the B-lines were used quite efficiently.

Conclusion

The Titan L-map was not quite such an outstanding success as the PDP-7 but it was
felt by the implementor to be a much better method of implementation than coding by
hand. Compared with Titan software that has been entirely coded by hand ML/I has been
remarkably free of bugs and the inefficiencies of speed and size are trivial compared with
Titan software generated by other artificial means, for instance by the Compiler Compiler.

12.7 The PL/I L-map

The Project

L was mapped by me into the high-level language PL/I for the IBM System/360 (or
any other machine with a PL/I compiler). The resultant implementation on System/360
has been working since January 1968.
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This project was attempted because PL/I has been claimed to be a suitable language
for software writing and it was of interest to compare the results of an L-map into PL/I
with the results of assembly language L-maps.

The Machine

Since PL/T is a machine-independent language the characteristics of the object machine
are not very relevant.

Representation of Data Types

PL/I contains all the data types of L but unfortunately it was not possible to make use
of these since there is no way, at least no straightforward way, of defining in PL/I the stacks
involving dynamically mixed data types that are required by the logic of ML/I. Instead all
the data types of L had to be represented as integers in PL/I, pointers being represented
as indices to an array and characters being converted to numerical representation on input.

Difficulties

The interesting thing about the PL/I L-map was that many of the features of L re-
quiring a lot of work in assembly language L-maps were trivial in the PL/I L-map. How-
ever there were a few features of L where the reverse applied, notably the statements for
communicating with the linkroutine (see Section 4.1.2 of Appendix B), the statements for
declaring “blocks” of variables (see Section 5 of Appendix B) and the encoding of the data
SECTIONSs. (The data SECTIONs would have been even more difficult to code by hand
than by macro replacement.) However overall the PL/I L-map was much easier than any
assembly language L-maps have been.

The Mapping

The PL/I L-map was performed mostly on Titan but part of the work was done on the
PDP-7. The job was done in three passes (plus an extra pass through the data SECTIONS)
and required 25,000 macro calls. The machine time taken to perform the mapping of L into
PL/I was much less than that taken to compile the resultant PL/I program. Furthermore
a good deal of the mapping time was spent on the non-essential task of controlling the
layout of the object program, in particular indenting statements to make the program more
readable.

It required about three weeks to write and debug the mapping macros and altogether
their specification only occupied 250 lines. A few replacements were left for the PL/I macro
processor to perform in order that these could be altered at Winchester, where the object
machine was, rather than at Cambridge. This turned out to be a wise decision. The PL/I
L-map was, in fact, the first L-map where the object machine was a large physical distance
from the implementor’s installation. Because of communication problems the debugging of
the object code proceeded rather slowly, but thanks to the excellent work of P. Seaman at
Winchester, the object code was working after twenty days. A large number of the errors
were due to my lack of familiarity with PL/I. As a result of this experience, it was decided
in future, when performing an L-map for a physically distant machine, to map a short test
program before attempting to map the entire MI-logic of ML/I. (It would, of course, have
been sensible to have planned it this way in the first place.)

The Object Code

The PL/I object code for the MI-logic of ML/I consisted of 1,750 PL/I statements and
the MD-logic, which was hand-coded in PL/I, added 250 statements to this. In some cases
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a sequence of several statements in L mapped into a single statement in PL/I although
this did not apply in the case of executable statements. It took 18 minutes to compile
the object code on a System/360 Model 40 (i.e., about the same time as it takes Titan to
perform an L-map into assembly language) and the compiled code occupied 80,000 bytes
(i.e., 20,000 words) of storage. This is about five times larger than would be expected if
the L-map had mapped into System/360’s assembly language rather than PL/I. Moreover
the compiled code was extremely slow in execution, being ten to twenty times slower than
would be expected from an assembly language implementation.

These huge inefficiencies were not due to the use of macro mapping since if I had
hand-coded the MI-logic of ML/I into PL/I the object code would have been very little
different. However some of the inefficiencies were due to my lack of knowledge of PL/I and
in particular to my lack of appreciation that a subroutine call in PL/I involves a very heavy
time penalty. Many features of L were mapped into subroutine calls in PL/I when in-line
code would have been much better. Moreover it would have been a good idea to replace the
calls of the shorter subroutines in the MI-logic of ML/I by in-line code, a job that can easily
be accomplished by macros. Unfortunately it is not a trivial matter to perform another L-
map for PL/I since the existing implementation is so slow that it would take several hours
to generate a new version of itself and if one of the Cambridge machines is used for the
job the resultant output needs to be keypunched by hand because the Cambridge machines
produce paper tape output and the Winchester machine only accepts card input.

Improvements such as those suggested above would probably double or treble the speed
of the PL/I implementation but large inefficiencies would still remain. This is due to the
fact that the PL/I compiler is still rather crude and the PL/I language is not very suitable
for describing the logic of ML/I with the result that many operations have to be done in
a rather clumsy way. This, of course, bears out the contention made in Chapter 9 that
software should not be coded in a pre-defined high-level language.

Conclusion

This project produced an implementation of ML/I that is so large and slow that its
usefulness is very limited. The mapping could have been made to produce rather faster
code, but overall the project has shown that PL/I at present has severe limitations as a
software writing language.

The fact that L can be mapped into a high-level language has been proved and this
may prove useful if a suitable software writing language with an efficient compiler exists for
a future object machine.

12.8 The PLAN L-map for ICT 1900

The Project

L was mapped into PLAN, the assembly language for the ICT 1900 series, by R.G. Gray,
a student for the Diploma in Computer Science at Cambridge University. 1 supervised the
project and wrote a few of the mapping macros. At the time of writing, the mapping of the
MI-logic has been performed but the debugging of the MD-logic and its integration with the
MI-logic has not yet been completed. The object machine is at the University of Essex and
L. Bouchard, a research student there, has written the MD-logic and taken responsibility
for the 1900 side of the project.
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An earlier, independent, PLAN L-map was started by S. Clelland, a vacation student
with Ferranti at Dalkeith. He completed about three-quarters of the work involved during
his eight weeks with the company. This was a very commendable achievement as he was
working under severe difficulties, for example: no initial knowledge of ML/I and little
experience of PLAN, difficult and remote machine access, poor documentation of L. — the
implementor’s manual was not ready at the time of his work — and, above all, no ready
access to anyone familiar with ML/I or the techniques used in an L-map.

The results of Clelland’s L-map became available to Gray about half way through his
own work and enabled him to improve and correct some of his mapping macros. Furthermore
Gray used Clelland’s encoding of the data SECTIONSs, which was done by hand.

The Machine

The 1900 series is a range of word machines. A word consists of 24 bits. Each machine
has eight accumulators of which three can also be used as index registers. Gray’s L-map
was for a 16K machine.

Representation of Data Types

All data types of L were stored in a full word of storage, because, although the 1900
has some instructions for dealing with characters packed four to a word, the set of such
instructions is not sufficiently comprehensive to be useful; there is, for example, no direct
way of comparing individual characters in packed form.

Difficulties

In general the 1900 was found to be a fairly good object machine. Its MOVE instruction
and its instructions with literal operands were very useful.

However PLAN was very disappointing and compared very unfavourably with assem-
blers on similar machines. Even the PDP-7 Assembler is in many ways more powerful
than the most elaborate version of PLAN. Defects of PLAN as an object language for an
L-map included: no character string literals, no symbolic register names, the restriction of
names of labels to five characters, inexact documentation and a number of petty restrictions
indicative of poor organisation in planning the PLAN assembler.

The Mapping

It required 29,000 macro calls to perform the 1900 L-map. It took six weeks to write
and debug the mapping macros, the specification of which occupied 520 lines. The mapping
was performed on Titan.

Note that the above figure of 29,000 represents a considerable improvement over earlier
assembly language L-maps.

The Object Code

The MI-logic of ML/I occupied 3,950 words on the 1900 of which 550 words were
declarations and data and the remainder were executable instructions. The MD-logic,
which has not been fully debugged yet, occupies about 400 words.

The macro-generated object code is about 12% inefficient in speed and size. This is
mainly due to the fact that the eight accumulators are not used in an optimal manner.

Conclusion

The 1900 L-map seems to be another successful one though, as would be expected, the
object code is rather less efficient than for the PDP-T7.
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It is pleasing to see that, as a result of experience gained from previous L-maps, it
has been possible on this L-map to cut down considerably on the amount of machine time
needed to perform the mapping. This bears out the claims made previously that the PDP-7
and Titan L-maps could, if re-written, be made much faster.

12.9 The IBM System/360 Assembly Language L-map

The Project

I started an L-map into the assembly language of the IBM System/360 (or any of
the compatible machines of other manufacturers). This project was shelved after about
two-thirds of the mapping macros had been written in favour of the PL/I L-map described
earlier because it was felt that the PL/I project was of more research interest.

The Machine

System/360 is a range of compatible machines where the store is addressable either
in terms of 8-bit “bytes” or in terms of 32-bit words. System/360 contains most of the
facilities of both character machines and word machines; in particular a good set of character
manipulation instructions is available. System/360 has 16 general-purpose registers.

Representation of Data Types
Characters and switches were stored in one byte and numbers and pointers in one word.
Difficulties

Both the machine and its assembler were excellent for an L-map and no serious diffi-
culties were encountered although the following minor difficulties arose:

a. The data types in L. were treated in different ways since they occupy different units of
storage.

b. System/360 has several different instruction formats.
c. The indirect addressing macro was rather clumsy because System/360 requires certain
data fields to be aligned to word boundaries.
The first of these is really an asset rather than a deficiency, but it does necessitate some
extra work in writing mapping macros.

Object Code

The object code would probably be fairly inefficient in speed and size, say about 40%, in
view of the fact that it would be difficult to make optimal use of the sixteen general-purpose
registers or of the wide variety of instructions available on System/360.

Conclusion

An L-map into System/360 assembly language is feasible and, in view of the fate of
the PL/I implementation, desirable.

12.10 The EASYCODER L-map for Honeywell 200

The Project

B. Chapman of Honeywell is working, with a little help from me, on an L-map into
EASYCODER, the assembly language of the Honeywell Series 200 machines. He has been
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working on this project very much as a part time activity and work has now been suspended
while he visits America.

The Machine

The Honeywell 200 is a character machine. Storage is addressable in units of 6-bit
characters. The sizes of data fields are defined by means of “word marks” and “item marks”
within the data itself rather than by the instructions that manipulate the data. Numerical
values can be defined in either character or binary form. The machine has no accumulator
but six index registers.

Representation of Data Types

Characters were represented in one character of storage and the remaining data types
in three characters. Numerical values were represented in binary form and word marks were
placed at the left hand end of data fields, as is standard.

Difficulties

The machine is very complicated and hence presented problems in generating efficient
code. EASYCODER, however, was very satisfactory as an object language. There were
difficulties due to the design of L, rather than the machine, and these are noted below.

The Object Code

The object code will be very much less efficient than would result if the logic of ML/I
had been specially planned for the Series 200. This is because certain features of L do not
fit in very well with the machine. In particular the lengths of data fields in L are defined
explicitly rather than by special markers, and pointers in L point at the left-hand sides of
the fields they designate whereas it is more convenient on Series 200 to point at the right.

Conclusion

The Series 200 shows up some limitations of L. as a machine-independent language.
However an L-map is clearly feasible.

12.11 Summary of Results

An L-map into the average assembly language takes about six weeks to perform and the
whole project of implementing ML/I by an L-map can be completed by one skilled person
in two months. The inefficiency in size and speed of the generated code varies between
almost nothing and as much as 50% with an average of about 20%. The object code should
be free of bugs (in as much as any code is) and, once one L-map has been done, it will be
a trivial matter to implement further versions of ML/I.

Although the logic of ML/I could be coded by hand in a month or so, it would take
very much longer than this to debug the resultant code and the implementor would have
the unenviable task of finding out about all the details of the workings of the logic of ML/I.

Hence an L-map is a very advantageous way of implementing ML/I. If the technique
is extended and used to implement other software the advantages multiply and multiply.
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Appendix A ML/I User’s Manual

This Appendix (originally named Appendix 1) was published as a separate document.

It has been updated several times; the latest edition is available from the official ML/I
web site (http://www.mll.org.uk).

Because of the updates, references to the Appendix may not be completely accurate
when it comes to precise section numbers.
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Appendix B L-Map Implementor’s Manual

This Appendix (originally named Appendix 2) was published as a separate document.

It has been updated several times; the latest edition is available from the official ML/I
web site (http://www.mll.org.uk).

The title of this document has also changed over time: the different titles are:

1. L-map Implementor’s Manual.

2. Technical Memorandum No. 68/1: The Use of ML/I in Implementing a Machine-
Independent Language in order to Bootstrap Itself from Machine to Machine.

3. Implementing software using the L language.

Because of the various updates, references to the Appendix may not be completely
accurate when it comes to precise section numbers.



