Using a macro processor to aid software implementation

By P. J. Brown*

A method of software implementation is described whereby the logic of the software is described
as a series of machine-independent macro calls, When it is desired to implement the software
on a given machine these macro calls are mapped into the assembly language of that machine.
The advantages and limitations of these techniques are discussed and some practical results are

presented.
(Received February 1969)

There are at least three internationally accepted machine-
independent high-level languages in which algorithms
involving purely numerical manipulations can be encoded.
Efficient compilers for these languages are widely avail-
able and it is rare that one is forced to resort to machine
code for encoding numerical algorithms. The situation
in this field, though not perfect, is therefore reasonably
satisfactory.

However, for algorithms involving a good deal of
non-numerical manipulations and in particular for soft-
ware, the situation is much less satisfactory. (The term
software’ is used here to mean compilers, assemblers,
etc.—not the languages they compile.) It is possible to
use some existing high-level languages for software
writing or to use other tools, such as syntax directed
compilers, but the resultant object code is normally
large and inefficient. Non-numeric features are often
treated interpretively. Hence these methods, though
very suitable if one wants to get something working
quickly, are not suitable for production software. There
do exist some honourable exceptions to this, i.e. machine-
independent high-level languages with non-numerical
facilities and efficient compilers. These are sometimes
extensions of well-known languages, such as Burroughs’
extended ALGOL. However, these languages are not
widely accepted and compilers often only exist for one
machine or range of machines. Hence the advantages
of machine-independence are largely lost.

There is, in fact, a much more fundamental dis-
advantage in using predefined high-level languages for
software writing over and above the fact that compilers
tend to be inefficient. However general a language
might be, it will never contain quite the right facilities
needed for describing a particular piece of software.
For example very few high-level languages provide an
efficient way of implementing a dynamic stack in which
data of varying types is freely intermixed. The basic
problem is that for numeric working there is a fairly
standard set of possible operations, data types and
aggregates, whereas for non-numeric working there is a
huge range of possible operations, data types and aggre-
gates and it is not possible to represent these efficiently
in terms of a few primitives. Hence when writing
software in a predefined high-level language one is
forced to adapt the design of the software to fit the
facilities that happen to be available in the language,
i.e., one tailors the software to the software-writing
language.

Because of the disadvantages described above, pro-

* Computing Laboratory, University of Kent at Canterbury

duction software is still largely written in assembly
language or in other machine-dependent languages
suitable for software writing, such as PL360 (Wirth,
1968). 1If it becomes necessary to implement the soft-
ware on a new machine, it needs to be re-coded, which
is a most undesirable task.

A DLIMP

The purpose of this discussion is to describe a method
of software implementation which uses a machine-
independent high-level language but surmounts the
problems described above. The method uses the ML/I
macro processor (Brown, 1966, 1967) and is called a
DLIMP, which stands for Descriptive Language Imple-
mented by Macro Processor.

Assume, therefore, that it is required to implement
some software S on several different machines or,
alternatively, some software S is to be implemented on
one machine and it is thought it may be necessary to
implement it on other machines, as yet undefined, at
some time in the future.

The first step of the implementation process is to
separate the logic of .S into its machine-independent part
and its machine-dependent part. Typically the latter
might include 1/O, hashing algorithms, data type con-
version, routines dependent on individual character
representations, .etc., i.e., routines where the very logic
is dependent on the object machine.

Of course, the word ‘machine-independent’ is a rather
loosely used (and much abused) term, and the above
division must be made in a somewhat ad hoc manner.
Moreover a distinction must be made between theory
and practice. In theory if some software is expressed as
a Turing machine it is machine-independent. However,
this is not much use in practice. This paper is concerned
with software that is machine-independent in practice
and hence there is an added requirement of efficiency in
the use of machines.

The technique to be described below is only applicable if
S is reasonably machine-independent. It is inapplicable
if the machine-dependent part of .S is as large as or larger
than its machine-independent part, in which case S, by
its very nature, needs to be largely rewritten for each
object machine.

The descriptive language

After the logic of S has been separated out into its
two parts, the next step of the implementation process

328 P.J. Brown

is to design a descriptive language for the machine-
independent part of S. This will be represented as
DL(S). DL(S) is a machine-independent language with
semantics designed especially for describing S and with
syntax designed to be translatable by ML/I into the
assembly language of any machine and preferably also
into any suitable high-level language. Loosely speaking,
DL(S) is a collection of machine-independent ML/I
macros corresponding to all the primitive operations
used in S.

Note that both the operations and the data types in
DI(S) are specially tailored to S. Thus if S involved a
dictionary facility, DL(S) would contain operations for
manipulating the exact type of dictionary used in S.
Alternatively if S involved list processing, DL(S) might
contain list data together with suitable operations for
manipulating it.

The designing of DL(S) would probably be concurrent
with the last stages of the designing of S and would
proceed incrementally, until a comprehensive and well-
rounded set of macros for the description of S was
accumulated. DL(S) would be an aid to the docu-
mentation of S and, in isolating the primitives needed,
should be a help in the design of S. If one uses flow-
charts, the macros in DL(S) would probably mirror the
operations one writes in the boxes of a fairly detailed
flow-chart.

The degree of sophistication in S is entirely at the
choice of its designer. A reasonable level would be to
make the level of DL(S) in its field roughly the level of
FORTRAN IV in the field of numerical problems. An
example of a descriptive language is given in Fig. 1.

SET STAKPT = STAKPT — OF (LNM)
SET VALUE = IND (STAKPT) NM
IF LEVEL = 0 A STAKSW = FALSE THEN
SET LEVEL = 1
MOVE FROM BLOCK (SDB) TO STAKPT
LENG OF (6*LPT+LNM)
END
// NOW TEST WHICH OPERATOR |/
CHARMATCH IDPT, ‘+’ GOING ADD, ‘—’
GOING SUB, **’ GOING MPLY
GO TO ERROR 3

[ADD] SET RESULT = RESULT + VALUE

Fig. 1. This shows typical statements in DL(ML/I) to give the
reader a general idea of the scope of the language. The first
two statements remove a variable from a stack. IND(...)NM
means the NMuMber pointed at by the argument and OF(...)
stands for the number of units of storage occupied by its
argument. For example OF(LNM) means the Length of a
NuMber and would be mapped into 1 on a word machine, or,
say, 4 on a byte machine,

The remaining statements illustrate some of the branching
statements (IF, GO TO and CHARMATCH) and a block
move (MOVE).

Generating an implementation

When it is desired to implement S for a given machine
M, an object language is chosen. This can be any
language for which a compiler or assembler exists for M
and into which DL(S) can be mapped. Normally the

object language is the assembly language of M. The
implementation of S then proceeds in two stages. This
is illustrated in Fig. 2, and Fig. 3 provides a concrete
example.

The first stage is performed using any machine for
which ML/I has been implemented. Macros are written
to map DL(S) into the object language. These mapping
macros, together with the machine-independent part of S
encoded in the language DL(S), are fed to ML/I and the
output (once the mapping macros have been debugged)
will be the machine-independent part of § encoded in
the object language.

The second stage is performed on the object machine
M, and simply involves the compilation or assembly of
the output of stage one and its incorporation with the
machine-dependent part of S, which, of course, needs to
be coded by hand in the object language on each
implementation.

In order to case the debugging stages, it is desirable
to write a comprehensive test program in DL(S) which
uses all the facilities of DL(S) and tests all the machine-
dependent routines, and to get this working before
embarking on the larger job of mapping the entire
machine-independent part of the logic.

Typically an implementation might take about six man
weeks though there will be considerable variations
dependent on the relative sophistication of DL(S) and
the object language.

To take a very simple example of a mapping macro,
assume that a statement in a descriptive language had
the form

IF variable = variable THEN GO TO label

For IBM System/360 the mapping macro for this
statement might be

MCDEF IF = THEN WITHS GO WITHS TO NL

AS< L RA, ~Al. Load first variable.
C RA, ~A2. Compare with second.
BZ ~A3, If equal, jump to label.
>3

(where NL stands for ‘newline’, and ‘~An.’ means
‘insert the nth argument here’), whereas for a PDP-7
mapping the macro might be

MCDEF IF = THEN WITHS GO WITHS TO NL

AS< LAC ~Al Load first variable.
SAD ~A2. . Skip if it differs from
second.
JMP ~A3. Jump to label.
>

In practice, no doubt, a rather more sophisticated IF
statement would be needed, but the above should illu-
strate the general technique.

Advantages of DLIMPs

The advantages of DLIMPs are manifold. Among
them are the following:

(@) Implementation time is considerably reduced,
partly because there will be no isolated coding
bugs. Any errors in the mapping macros tend to

Macro processors and software implementation 329

be manifestly obvious since they will arise in many
places in the logic and will make it horribly wrong.
Once the mapping macros are debugged the entire
logic will be mapped correctly. Only if extensive
optimisation is attempted by making macros inter-
depend in elaborate ways does a danger of isolated
bugs arise, and, in fact, in practice no difficulties
have been found in this area since it has been
found that optimisation is best performed by an
extra pass through ML/I with special macros for
eliminating redundancy.

(b) Once one mapping has been performed, the imple-
menting of changes and improvements to S is
trivial. The logic of S as described in DL(S) is
updated and is re-mapped into each desired object
language.

(¢) Once one descriptive language, DI(S1), has been
designed, it is much easier to design a descriptive
language for a different piece of software, S2.
Most descriptive languages will have a common
kernel (e.g. conditionals, looping, simple arithme-
tic) and DL(S2) could be derived from DL(S1) by
deleting facilities peculiar to S1 and replacing
them by ones specially tailored to S2. The con-
cept of ‘inner and outer syntax’ (Wilkes, 1968) is
relevant in this respect.

(d) The technique is specially suitable for a new

machine with little software of its own.

(¢) The implementor does not need to learn all the
details as to how the logic of the software works,
i.e. there is less of a problem in implementing
someone else’s software.

These advantages are such that it may be worth while
to implement software by means of a DLIMP even if it
is only to be implemented on one machine. Indeed, one
approaches a DLIMP when making extensive use of a
macro-assembler in software implementation, a practice
which is becoming quite common.

Disadvantages

The disadvantage of a DLIMP is the fact that the
generated object code is less efficient than would be
produced by hand-coding in assembly language. How-
ever this inefficiency is much less than that which arises
when software is coded in a predefined high-level
language. This is because the software-writing language
is tailored to the software and not vice versa, the thesis
on which this whole technique is based. In practical
cases DLIMPs have involved inefficiencies of between
3% (on a PDP-T7) and 209 (on an IBM System/360) in
speed and size compared with assembly language coding.
(There is a further, usually very small, inefficiency
involved in organising the logic of software in a machine-
independent way, even if its encoding is perfectly effi-
cient.) The degree of inefficiency in a DLIMP depends
to some extent upon the effort put into optimising the
mapping macros, but to a much larger extent on the
complication of the order code of the object machine.
The simpler an order code the easier it is to generate
optimum code, a factor that should be borne in mind in
machine design given that more and more code is
artificially generated.

Ambitiousness

It should be noted that a DLIMP is a relatively
unambitious method of software implementation com-
pared with some automatic software generation tech-
niques in that the designer of the software is entirely
responsible for its logic. He gets no help (and no
constraints) in the form of automatic scanning or
translation algorithms. The end product runs entirely
independently of ML/I. ML/l does not act as a
generalised compiler.

Proposals such as Halpern’s (1968) and software such
as the Compiler Compiler (Brooker and Morris, 1962)
are therefore entirely different in concept from a
DLIMP.

rInputs: Macros to map DL(S) Machine-independent part of
into object language S encoded in DL(S)
L 4 v
1st Stage<
Any ML|I machine: ML/
| Output: Machine-independent part of Machine-dependent part of
S encoded in object S hand-coded in object
r Inputs: language language
Machine M: Compiler or assembler
2nd Stage+ for object language
I
i
Output: Implementation of
S for M

Fig. 2. General organisation of a DLIMP,

The software S is being implemented for a machine M.

330 P.J. Brown

On the other hand, work similar in concept to a
DLIMP includes that of Wilkes (1964), Ferguson (1966)
and Waite (1968).

Results of DLIMPs

ML/I itself has been implemented on several machines
by means of a DLIMP. The way this was done is
illustrated in Fig. 3. About nine-tenths of the logic of
ML/I went into the machine-independent part. A full
description of DL(ML/I), which is called, simply, L, 1s
given by Brown (1968a) and detailed descriptions of
some of the mappings that have been performed are
given by Brown (1968b). Fig. 1 is a short extract from
the logic of ML/I, and should give the reader an idea of
the form of DL(ML/I).

Up to now, DL(ML/I) has been mapped into one
high-level language, PL/I, and into the assembly lang-
uages for the following machines: PDP-7, ICL Titan,
ICL 1900 series, ICL 4100 series, Honeywell 200 series,
IBM System/360.

All of these mappings have produced successful
implementations of ML/I except the mapping into PL/I
The PL/I implementation turned out to be so large and
so slow that it was virtually useless. The main reason
for this is that PL/I, although better than other high-
level languages, has not quite the right facilities for
describing the logic of ML/I and a number of operations
had to be performed in a very clumsy way. This is
evidence to support the contention that production soft-
ware should not be written in predefined high-level
languages. Another reason for the slowness of the
PL/I implementation was the heavy overhead on a
subroutine call, a fact that I had not sufficiently appre-
ciated when designing the mapping macros.

Of the assembly language mappings, none has produced

code ‘that is more than 209, worse than would be pro-
duced by hand, and the average inefficiency is about
10-15%. These figures for inefficiency were derived by
encoding randomly selected parts of the logic by hand
and comparing the number of instructions produced with
the number produced by the macro-generated equivalent.
The hand-coding was done in a straightforward manner,
using no programming tricks. To some extent the
figures for efficiency reflect the amount of effort put into
optimising the mapping macros.

No mapping has necessitated a change to the descrip-
tive language of ML/I and hence it can reasonably be
claimed to be machine-independent. The only reserva-
tions about the descriptive language arose from the
Honeywell Series 200 mapping. Series 200 are character
machines with data fields and instructions delimited by
word marks and item marks. The logic of ML/I, on
the other hand, has been written in terms of data fields
with explicit lengths and hence did not make good use
of the facilities of the Series 200. The Series 200 was
the only mapping where the inefficiency due to describing
ML/I in a machine-independent way (as distinct from the
inefficiency due to using macros rather than hand-
coding to implement it) was significant. On the IBM
System/360, on which character manipulation instructions
have explicit lengths, much better use was made of the
hardware.

The average time taken for these implementations of
ML/I was six to ten man weeks.

In addition to the DLIMPs that have been used to
implement ML/I, a project is under way to implement
Dartmouth BASIC by means of DLIMPs. This is being
undertaken by W. H. Purvis of the University of North
Wales.

(Inputs: Macros to map DL(ML/I) Machine-independent part of
into PLAN ML/I encoded in DL(ML/T)
I
1st Stage-
ICL 4100: ML/I
\ Output: Machine-independent part of Machine-dependent part of
ML/I encoded in PLAN ML/I hand-coded in PLAN
rlnputs:
2nd StageJ ICL 1900: PLAN
T assembler
|
I
| Output: Implementation of ML/I

for ICL 1900

Fig. 3. Specific example of a DLIMP. This illustrates a DLIMP to implement ML/I for the ICL 1900 series using the
ICL 4100 implementation of ML/I to perform the mapping.

Macro processors and software implementation 331

Reasons for using ML/I

Almost any general-purpose macro processor can be
used to perform a DLIMP but it is claimed that ML/I
has considerable advantages because:

(@) it allows freedom ‘of notation in writing macro
calls and sophisticated macros can be built
up relatively easily (e.g. arithmetic expressions,
ALGOL-like IF statements);

(b) it allows macro calls within macro calls (e.g. a
constant macro within an arithmetic expression
macro within an IF macro);

(c) it does not require any trip character to precede
a macro call.

Of these (¢) is probably the most important. It means
that ML/I is capable of performing systematic editing
and it is unnecessary to specify in the descriptive language
what is a macro and what is not. This is decided only
when a mapping is made. The following example
llustrates the advantages of this.

In DL(ML/T) identifiers of up to six characters are
used for program labels. In most mappings these were
copied without alteration into the object program, i.e.
they were not treated as macros. However, the PLAN
assembler used on the ICL 1900 Series mapping only
allowed five character labels, and so it was necessary to
change all six character labels to five. It was possible
to do this by including, within the mapping macros for
PLAN, macros to scan for all six character labels and
generate macros to replace them by five character labels,
checking each for uniqueness. No messy hand editing
was needed.

Examples like this arose on nearly every mapping.

References

In the PL/I mapping, for instance, it was necessary to
map a series of data declarations into an array with an
initial value and to replace references to the data
accordingly.

This facility in ML/I for systematic editing (i.e. editing
involving commands to replace systematically one piece
of text by another throughout a document) is the main
reason why mappings have avoided most of the unfore-
seen difficulties that normally plague exercises in
machine-independence because of the arbitrary differ-
ences between machines and between various compilers
and assemblers.

Acknowledgements

The following people have helped me with the various
individual implementations and I very much appreciate
their excellent work:

A. G. Adams of Glaxo Laboratories.

L. H. Bouchard of the University of Essex.

H. Brown of the University Mathematical Laboratory,
Cambridge (now of the University of Kent).

B. C. Chapman and R. G. Gray of Honeywell.

S. Clelland and 1. Duncan of Ferranti.

D. F. Howe and P. Seaman of IBM.

W. H. Purvis of the University of North Wales.

Several others have also been of great assistance.

A good deal of the work described above was per-
formed at the University Mathematical Laboratory,
Cambridge, to whom I am very grateful, together with
the S.R.C., who provided my grant while I was there.

I should also like to thank the referee for useful
criticisms.

BROOKER, R. A., and Morris, D. (1962). A general translation program for phrase structure languages, JACM, Vol. 9, No. 1,

pp- 1-10.

BROWN, P. J. (1966). ML/I user’s manual, University Mathematical Laboratory, Cambridge.

BrowN, P. J. (1967). The ML/I macro processor, Comm. ACM, Vol. 10, No. 10, pp. 618-623.

BrownN, P. J. (1968a). The use of ML/I in implementing a machine-independent language in order to bootstrap itself from machine
to machine, Technical Memorandum No. 68/1, University Mathematical Laboratory, Cambridge.

BrOwN, P. J. (1968b). Macro processors and their use in implementing software, Ph.D. thesis, Cambridge University (partial

copies available from the author).

FerGusoN, D. E. (1966). -The evolution of the meta-assembly program, Comm. ACM, Vol. 9, No. 3, pp. 190-193,
Harpern, M. L. (1968). Towards a general processor for programming languages, Comm. ACM, Vol. 11, No. 1, pp. 15-25.
Warte, W. M. (1968). The STAGE 2 macro processor, University of Colorado Computing Center, Boulder, Colorado, Pre-

liminary Edition.

WILKES, M. V. (1964). An experiment with a self-compiling compiler for a simple list-processing language, Annual Review in
Automatic Programming, Vol. 4, pp. 1-48, Pergamon Press, Oxford.

WILKES, M. V. (1968). The outer and inner syntax of a programming language, Comp. J., Vol. 11, pp. 260-263.

WirtH, N. (1968). PL360, a programming language for the 360 computers, JACM, Vol. 15, No. 1, pp. 37-74.

