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Preface to the Second Edition

The first edition of this manual was published by the Cambridge University Mathematical
Laboratory under the somewhat verbose title Technical Memorandum 68/1: the use of
ML/I in implementing a machine-independent language to bootstrap itself from machine to
machine.

This second edition has been re-published at the University of Kent, and contains minor
additions and corrections to the first edition.

Readers should note that there now exists an alternative and usually better way of
implementing ML/I, which is described in the manual Implementing software using the
LOWL language.

The bulk of the text has remained unchanged since the first edition, the following being
the only facilities that have been significantly extended: READ, QUTPUTID, MDERPR, LAYCHAIN
(all concerned with startlines), SUBROUTINE (use of a stack for return addresses), HETABLES
(S-variables) and initialisation (S-variables and GHSHPT). Minor textual changes have been
avoided where possible. For example semicolon is still used to terminate operation macros
(though most implementations now use newline instead), ~ is assumed to be the insert
marker (rather than % as in later manuals) and {NL} (rather than the layout keyword NL)
is used to stand for the newline character within structure representations.

There have also been changes to the character set used in listings, paper tapes, etc. due
to the differences in the codes used by the ICL 4130, where such items are now produced.

Preface to the Revised Second Edition

This edition has been converted to electronic form using Texinfo, and the opportunity taken
to make some minor changes which do not, however, merit a new edition.

The text has been updated to reflect current versions and usage of ML/I. For example,
newline is now used to terminate operation macros, and examples of structure representa-
tions etc. have been updated to reflect this; also, % is assumed to be the insert marker.
Source code in L is now distributed in ASCII, and the opportunity has been taken to use
more meaningful characters for the ‘and’ operator (now &), the ‘or’ operator (now |), and
the character representing newline (now $).

Some substantive errors (present even in the first edition) have been corrected, as well
as transcription errors introduced in the second edition.

Indexes have also been added.
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1 The Transfer of ML/I from Machine to Machine

In order to make it easier to transfer ML/I from machine to machine most of the logic
of ML/I has been coded in a ‘machine independent’ language which has been specially
designed for the purpose. This language is called L. and is intended to have the following
properties:

a. L is suitable for describing the logic of ML/I.

b. Programs in L are easily readable so that L can serve as a ‘publication language’ in the
same way as ALGOL does.

c. L can be mapped by macro replacement using ML/I into the assembly language of any
desired machine.

d. L can be mapped by macro replacement using ML/I into any suitable high-level lan-
guage. To be ‘suitable’ a high-level language must contain, in one form or other, the
equivalent of all the facilities of L. In particular it should be capable of performing
arithmetic operations, character operations, and operations on blocks of data.

However, certain parts of the logic of ML/I are manifestly machine-dependent, and
hence there is no point in trying to describe them in a machine-independent way. Machine-
dependent operations include I/O, the hashing function and type conversion routines. Hence
the logic of ML/I is divided into two parts as follows:

1. The MI-logic. This is the machine-independent part of the logic and is described in the
language L.

2. The MD-logic. This is the machine-dependent part of the logic, which requires hand-
coding for each implementation. It is described verbally in this manual.

In a typical implementation of ML/I the MI-logic might map into 3000 orders and the
MD-logic into 500.

1.1 Procedure for transfer

The use of the language L enables any existing implementation of ML/I to be used to create
an implementation for a new machine. The procedure for doing this is as follows:

a. An object language is selected into which L is to be mapped. The object language may
be the assembly language of the object machine or it may be a high-level language for
which a compiler exists on the object machine.

b. A base machine is selected. The base machine must possess an implementation of ML/I
but apart from this the choice of base machine is arbitrary.

c. Macros are written to map L into the object language. These are called the mapping
macros.

d. When the mapping macros have been debugged, they are used to map the description
in L of the MI-logic of ML/I into an equivalent description in the object language. This
operation is called an L-map. L-maps are performed on the base machine.

e. The MD-logic is encoded by hand in the object language. This operation should be
carried out in parallel with the writing of the mapping macros since there may be
some interaction between the two. The MD-logic should be debugged using the object
machine.
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f. The object language versions of the MI-logic and MD-logic are combined and assembled
(or compiled) on the object machine. When this code has been debugged the result is
a working version of ML/I on the object machine. Debugging should not be a lengthy
operation since if the mapping macros have been correctly specified there should be no
errors in the Ml-logic. If however these macros are incorrect to the extend that the
generated version of the MI-logic is riddled with errors, it may be necessary to go back
to step c¢) above.

1.2 Extensions of the technique

The procedure outlined above can be used not only for ML/I itself but for any piece of
software. Assume that it is desired to apply the procedure to another piece of software,
which will be called S. Then a new language, M, is designed, which has similar properties
to L except that it is for describing the logic of S rather than ML/I. In practice M may be
much the same as L but whereas L has special statements for stacking and for following
down chains, which are special operations heavily used in the logic of ML/I, M may have
statements for performing operations peculiar to S. Typical such operations might be ac-
cessing the particular type of dictionary used in S or manipulating the particular type of
list structure used in S.

In most cases once mapping macros to convert L into some object language had been
written, it would only require a few extra macros and a few deletions of existing macros to
derive a system of macros for mapping M into the same object language.

1.3 Efficiency of Generated Code

The efficiency of the macro-generated code depends on how much trouble has been taken
in writing the mapping macros.

If efficient code is to be generated then these macros must be designed to recognise all
sorts of special situations and, as a result, the macros will be larger and will take much
longer to debug. However, even if little effort is made to perform optimisation the generated
code will not normally be grossly inefficient; the inefficiency will normally be between 5 and
50 per cent. The reason why the generated code should be reasonably efficient is that L
has been specially designed for describing the logic of ML/I, and the basic statements in
L therefore correspond to the most heavily used operations in ML/I. Hence even if special
cases are not optimised, the resultant code should be much better than the code that
would result if the logic of ML /I had been described in some predefined high-level language
because the facilities offered in the high-level language would be unlikely to correspond to
the most heavily used operations of ML/I and so some of these operations would need to
be described in a rather clumsy way (for example when using PL/I, algorithms involving
string-manipulation can often only be expressed in a logically clumsy way and, even if the
PL/I produced highly optimised code, the resultant code would still be much less efficient
than would result if there had been special string manipulation operators tailored to the
problem in hand).

To summarise, it is better to tailor the software-writing language to the software rather
than vice versa.
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1.4 Advantages of the Technique

Of course it is always possible to code the MI-logic of ML/I by hand for the object machine.
This has the advantage that the resultant code should be more efficient, though the imple-
mentor would need to have a thorough knowledge of the working of ML/I to gain much
in this direction. Against this, the following advantages can be claimed for converting the
MI-logic by macro-generation.

a. Macro-generation requires considerably fewer man-hours.
b. Debugging of the generated code should be a very much shorter operation.

c. If a new version of ML/I becomes available it will be a trivial operation to implement
it.

d. The technique is particularly advantageous if the object machine is newly manufactured
and has no software or if the object machine is on order but not yet available since
most of the work of implementing ML/I can be done on another machine.

e. As a by-product, a compiler for L. on the object machine is available and can be used
for other purposes.

1.5 Magnitude of an L-map

It is impossible to give any firm estimate of the number and size of the mapping macros
necessary to perform an L-map, since this depends so much on the object language. In
general the higher level the object language, the fewer features of L that require complicated
mapping macros. For example, arithmetic expressions in L require very little translation to
be made into expressions in PL/I whereas extensive translation is necessary to map them
into assembly language.

Another variable factor is the degree to which names of variables, labels and subroutines
in L require translation. Often no translation is necessary, but FORTRAN, for example,
would require the identifiers representing labels to be mapped into numbers.

Hence although each L-map will normally have a mapping macro corresponding to
each statement in L, the number of mapping macros needed to deal with sub-components
of L will vary considerably between L-maps. However if a figure is required for the time to
perform an L-map, experience so far indicates an average time to perform an L-map into
an assembly language of about six man weeks plus the time taken for the implementor to
learn to use ML/T and the object language, if he does not know them already.

1.6 Organisation of this manual

The remainder of this manual is devoted to a description of L and a description of the
MD-logic of ML/I. Hints on the writing of an L-map are provided. It is hoped that the
discussion will be of interest to three types of reader:

a. Readers who wish to implement ML /I by performing an L-map.
b. Readers who wish to implement ML/I by hand-coding.

c. Readers who are interested in machine-independence.
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2 Basic Details of L

2.1 Character set

The characters used in L consist of the upper case letters A-Z, the digits 0-9 and the
following:

, =2 L01& | C)+-/ %
together with the following characters which occur only within character string literals:

; 8
In addition the layout characters space, tab and newline are used. The only significance of
layout characters is:

a. Newline is used to terminate statements.

b. Spaces are significant within character string literals.

Apart from this, layout characters are used redundantly to improve the layout of the logic.
Redundant tabs and newlines often appear between statements and redundant spaces often
occur adjacently to statement delimiters.

2.2 Notation and Terminology

The notation used for describing the syntax of L is the same notation as that used in the
ML/I manual except that the brackets << and >> are used instead of [ and ], since the
latter occur naturally. To illustrate the notation, the syntax of the ML/I MCGO statement
would be written:

MCGO {arg 1} << (IF ) {arg 2} (= ) {arg } 7 >>;
(UNLESS) (GR )
(etc.)

Within the description of the semantics of L the notation of ML/ inserts is used, with %
as the insert marker as in the ML/I User’s Manual. Hence %A1. refers to the first argument,
%A2. to the second, and so on. T1 is used to represent the number of arguments and so
%AT1. refers to the last argument.

In order to aid the writing of an L-map, structure representations are specified for all the
elements of L. However in many cases delimiter structures can be written in many possible
ways, and hence the structure representations specified should be viewed as suggestions
rather than as absolute requirements.

2.3 Identifiers

Identifiers are used in L for the names of variables, labels and subroutines. Each identifier
is a sequence of between three and six characters, the first of which is a letter and the
remainder of which are either letters or digits.
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2.4 Layout of the Logic

The Ml-logic is divided into pieces called SECTIONs. These are delimited by the SECTION
and ENDSECT statements in the following way:

SECTION name, subsidiary comment

<< statement *>>

ENDSECT name
where the name following ENDSECT is the same as that following SECTION. The name serves
no other purpose than to identify the SECTION. The SECTIONs of the logic and their
names are as follows:

a. VARS. Variable declarations.

b. INVALS. Initialisation before main logic is entered.
c. MAIN. Main logic.

d. MAINSUBS. Main subroutines.

e. OPMACS. Operation macros.

f. DEFSUBS. Subroutines for setting up definitions.

g. ERR. Error routines.

h. ENVPR. Logic to print out environment.

i MACNAMES. Operation macro names.

j- DELS. Delimiters and keywords.

All statements in the VARS SECTION are declarative statements, which are described
in Chapter 5 [Declarative Statements and Initial Values|, page 37. All statements in the
MACNAMES and DELS SECTIONSs, which are called collectively the data SECTIONSs are data-
defining statements, which are described in Chapter 6 [The Data SECTIONS|, page 40.
The remaining SECTIONS are called collectively the program SECTIONs and contain only
executable statements, which are described in Chapter 4 [Executable Statements|, page 17.

The main purpose of SECTIONSs is to give some flexibility in the organisation of an
L-map. The order of SECTIONs may be changed freely if desired and some SECTIONs
may be hand-coded and some may even be totally ignored in some L-maps. Other possible
uses of SECTIONSs are:

a. They may be mapped into statements which control the format of the object code, e.g.
statements which start a new page of listing.

b. They may be useful if the object code needs to be segmented.

c. Since different SECTIONSs contain different kinds of statements it may be convenient
to map groups of them separately. However, since all the statements have different
formats there is no harm in applying all the mapping macros to all the SECTIONS.

There are, in addition to SECTION and ENDSECT, two other layout statements, namely
PRGSTART and PRGEND. Each of these occurs once in the logic, PRGSTART at the very start
and PRGEND at the very end. Neither statement has any arguments. In most L-maps these
statements will either be deleted or be converted into control statements for the object
language.

The structure representations of the four layout statements are as follows:

a. SECTION, NL

b. ENDSECT NL
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c. PRGSTART NL
d. PRGEND NL

2.5 Comments

L contains three types of comment, all of which occur freely throughout the logic. The
types are:

a. Headings. These are major comments, which indicate the beginning of a logically
distinct piece of logic. Headings have form:

/+ text +/
Headings always occupy a line by themselves.
b. Subsidiary comments. Subsidiary comments are written:
// text //

Subsidiary comments of this form occur as arguments to the SECTION, SUBROUTINE and
BLOCKDEC statements. As well as this, subsidiary comments can occur by themselves,
in which case they occupy a single line, though they may be preceded by tabs.

c. Statement Prefizes. Some statements in L which may require special action in certain
L-maps are immediately preceded by comments of form:

/- text -/
As an example of a statement prefix, an assignment statement on which arithmetic
overflow may occur is written:
/- OVP -/ SET ...
In an L-map where it was desired to take special action on such an assignment statement,
/- OVP -/ SET

would be recognised as a macro name. The list of possible statement prefixes is given in
Appendix A. However this list may be extended at any time, if some L-map requires certain
statements to be identified. In order that new prefixes should not upset existing L-maps,
each L-map should contain the skip definition:

MCSKIP / WITH - - WITH /

to delete all prefixes. This skip would, of course, be overridden for those prefixes it was
desired to recognise. For example, if

/- OVP -/ SET
was a macro name, then this would naturally override the skip.
The delimiter structures for comments are:
a. / WITH + + WITH /
b. / WITH - - WITH /
c. /WITH/ / WITH/

Comments should always be defined as skips or straight-scan macros.
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2.6 Readability of object language listing

A basic decision to be taken on each L-map is whether the generated object language
program is to be made to ‘look nice’. If not, all comments can be deleted. If so, comments
must be mapped into object language comments and a fair amount of trouble must be
taken with newlines, tabs and spaces in order that the format of the object code will look
reasonable.

2.7 Statements and labels

A program in L is similar to a program in most other programming languages; it consists
of a sequence of statements, some of which may be labelled. In L a label is written:

[ identifier 1]

Labels are applied to data-defining statements as well as executable statements. In the
former case they are called data labels and in the latter case program labels.

2.8 Use of Storage and Stacks

Several statements in ML/I use the stacks. To understand the use of these it is necessary
to consider the way ML/I makes use of storage.

When ML/I is loaded into a machine it may be loaded in one contiguous chunk or,
provided the loader can take care of the necessary linkage, the MD-logic and the various
SECTIONSs of the MI-logic can be split off from one another. Some of them might even
reside on backing storage. In addition to the storage required for its logic, ML/I requires a
fairly large area of contiguous storage for workspace, which is used for its two stacks. These
two stacks are the forwards stack, which starts at the beginning of workspace and works
towards the end, and the backwards stack, which starts at the end and works towards the
beginning (if the two stacks ever meet, a process is aborted for lack of storage). The two
stacks are used to contain macro definitions, etc., and to preserve information in recursive
situations.

In a batch processing environment the workspace will normally occupy all the free
storage of the machine, but in a multi-programming environment the size of the workspace
required, which depends mainly on the number and size of macro definitions, might be
specified by the user.
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3 Components of Statements

This chapter describes the components that make up the arguments of statements in L.
These arguments may consist of constants, variables or indirect addresses. In some cases
these are combined to form arithmetic expressions. For most L-maps it will not be necessary
to convert the form of variable names but macros will be needed for the following purposes:

a. To convert machine-dependent constants.
b. To perform indirect addressing.

c. To perform expression evaluation.

Constants and variables occur in all SECTIONs of the logic, but indirect addresses and
expressions only occur in the program SECTIONSs.

3.1 Data types

The following data types, which apply to constants, variables and indirect addresses, occur
in L: pointer, switch, character, number. These data types are described below.

a. Pointers. Pointers point at addresses on the stacks and in the data SECTIONs. The
following operations may involve pointers: addition, subtraction, assignment, numerical
comparison, passing as argument.

b. Numbers. Data of type number can take on positive or negative integral values. The
absolute value of numerical data cannot exceed the maximum number of characters that
can be fitted onto the stacks, except for the variable INVOCT (the count of calls) and
variables used as line counts or in calculating the values of macro expressions. These
latter are potentially infinite. There is no point in extending the precision of numerical
data just to cater for these few variables as overflow is unlikely and not important even
if it does occur. Most implementations ignore overflow, but, just in case it is desired to
detect it on some particular implementation, assignment statements on which overflow
is possible have been prefixed:

/- OVP -/
Numerical data is subject to the same operations as pointer data.

c. Switches. Switches can take the numerical value 0, 1, 2, 3, 4, 5, 6 or 7 (the values
TRUE and FALSE are also used, but these are represented as 1 and 0, respectively).
Switch variables are subject to the following operations: assignment, and’ing, or’ing,
comparison for identity, passing as argument.

d. Characters. Character data can represent any character in the set used by the im-
plementation. Character data is only subject to one operation, namely comparison
for identity (character data is moved about using the block move statements (see Sec-
tion 4.3 [Block Moving Statements|, page 25), but never character by character).

3.1.1 Representation of Data Types

Data types need only be differentiated on an L-map if they are stored in different ways. It
makes an L-map very much easier if all data types are represented in the same way. This
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will normally be convenient on a word-oriented machine, but it would be rather wasteful, for
instance on System/360 to represent switches or characters as full words. Failing complete
identity of data types, the following equivalences make an L-map easier:

a. Numbers and pointers are represented in the same way.

b. (less important) Switches and characters are represented in the same way.
The first consideration is important as it obviates the need to examine the data types when
generating code for arithmetic expressions.

It is very undesirable to represent characters in a ‘packed’ form in such a way that they
occupy less than the basic storage unit of the object machine, since this involves considerable
problems with code generation, addressing and alignment.

Examples of how data types have been treated for various object languages are:
a. PDP-7 Assembly Language. No differentiation between data types. All data occupies
one 18-bit word.

b. IBM System/360 Assembly Language. Characters and switches occupy 1 byte (of 8
bits), and numbers and pointers occupy 4 bytes.

c. PL/I. All data is represented as:
FIXED(15) BINARY STATIC

3.2 Variables

Variables in L are represented by identifiers. All variables are represented are declared in
the VARS SECTION. Variables may be of type pointer, number or switch. There are no
character variables. The last two characters of the name of a variable represent its type as
follows:

Sw means switch, e.g. MASKSW, INSW.
PT means pointer, e.g. SPT, PRP2PT.
CH is not used.

Anything else means number, e.g. TYPE, IDLEN.

All variables are scalars and have global scope. There is never any need for storage to
be assigned to variables dynamically.

3.3 Constants

Many constants in L of type number or switch are represented as integers. These integers
are always in the range 0-9 except for one case noted in Section 6.2.3 [Hash-Tables and
their Definition], page 43.

However in many cases the value or the representation of a constant in L will depend
on the object language or on the object machine. These constants are represented in L by
constant-defining macros, each of which will be replaced by the appropriate value during
an L-map. The various constant-defining macros are described in the following Sections.
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3.3.1 The OF and length-defining macros

Before describing the OF macro it is necessary to describe the six length-defining macros,
which act as subsidiary macros to the OF macro. The length-defining macros all represent
positive integer constants as follows:

1. LPT = number of units of storage occupied by a pointer.
LNM = number of units of storage occupied by a number.
LSW = number of units of storage occupied by a switch.
LCH = number of units of storage occupied by a character.

LICH = 1/LCH. Special action is necessary if LCH is not 1.

S Gk o

LHV = number of units of storage occupied by the hash-table (see Section 6.2.3 [Hash-
Tables and their Definition|, page 43).

Special action is necessary if any of these constants are not integers (one solution may be
to ‘devalue’ the storage unit). The length-defining macros only occur within the argument
of the OF macro, but it will usually be convenient to give them global scope.

To illustrate sample values of these constants, in the PDP-7 implementation the first
five all had value one, whereas in the System/360 implementation LPT and LNM had value
four but LSW and LCH had value one.

The specification of the OF macro is as follows:
Purpose

Designates numerical constants that are dependent on the amount of storage
occupied by individual data types.

General Form
OF ( argument )

Structure Representation

OF WITHS ( )
Ezamples
a. OF(LPT)

b. OF (2xLPT - LSW)

Restrictions

The argument is such that if all the length-defining macros are replaced by
their numerical values, then what results is a macro expression involving only
constants (this macro expression will in practice have a positive result).

Action

OF should be replaced by the result of the macro expression occurring as its
argument. For most L-maps the following macro should suffice:

MCDEF OF WITHS ( ) AS <%%A1..>
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3.3.2 The Quote macro

Purpose

Designates a character constant.
General Form

’character(s)’
Structure Representation

> 2

(if it is a macro, it should be a straight-scan macro, and the argument should
be referenced as %WB1.).

Examples

1. 'A°

2. ;$ )

3. P

4. ’MCDEF’
Restrictions

Where quote is used in the program SECTIONSs its argument is always a
single character. However it may have any atom as an argument if it occurs
in the data SECTIONs. The characters that can occur within the argument
are the upper case letters A to Z, a space, or any of the following;:

, =)+ -/ %/ ;8
Each character stands for itself except $, which stands for newline.
Notes

a. If the object language contains some facility for literal character constants
then the quote macro should not require much work during an L-map.
Only $ will need replacing and this can be achieved by:

MCDEF <’ WITH $ WITH ’> AS < internal code for newline>
at least within the program SECTIONS.

b. The character set of an implementation is arbitrary except that it must
contain all the characters that can occur within the argument to the quote
macro (or their equivalents), together with the digits 0 to 9. Furthermore
the character set must not contain ‘shift’ characters, and the internal

representation of characters may need to be changed if such characters
normally exist.

3.3.3 The AD and BLOCK macros

The AD and BLOCK macros are used to represent constants of type pointer. Since the BLOCK
macro is only used within block moving statements, its description is delayed until these
statements are described in Section 4.3 [Block Moving Statements], page 25. The AD macro
is described below.
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Purpose

Designates address of data label.
General Form

AD( identifier )PT
Structure Representation

AD WITHS ( ) WITHS PT
Example

AD (KSPACE)PT

Restrictions

The identifier is the name of a data label.
Action

AD should be replaced by a literal representing the value of the address.
Notes

In some L-maps AD may prove very difficult to encode. It may help to build it
into the expression evaluation macro (see Section 3.6 [Arithmetic Expressions],
page 16).

3.3.4 Constants Represented by Identifiers

Some constants in L are represented by identifiers. This is done either for mnemonic pur-
poses (e.g. the constant TRUE) or because the value of a constant will vary between different
machines (e.g. the constant STOPCODE). A complete list of such constants follows, together
with a description of what values should be used to replace them.

3.3.4.1 Switch Constants

There are two possible switch constants:
a. TRUE. This has value one.
b. FALSE. This has value zero.

3.3.4.2 Pointer Constants

There are two possible pointer constants:

a. ZEROPT. This may have any value which is less than or equal to any possible
pointer value.
b. NULLPT. This may have any value that does not correspond to a possible value

of a pointer.
In most L-maps both ZEROPT and NULLPT will have value zero.
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3.3.4.3 Character Constants
There is one possible character constant:

a. STOPCODE. This is a special marker, not representing any possible character, which
uniquely identifies the end of the source text. STOPCODE is used by the
READ statement, see Section 4.4.1 [The READ Statement], page 28.

3.3.4.4 Number Constants

The following constants represent the sizes of the blocks of variables declared using the
BLOCKDEC statement (see Chapter 5 [Declarative Statements and Initial Values], page 37).

a. SDBSZ. This represents the number of storage units used by the SDB block.
b. OPDBSZ. This represents the number of storage units used by the OPDB block.
a. ALLSZ. This represents the number of storage units used by the ALL block.
a. EDBSZ. This represents the number of storage units used by the EDB block.

The following mnemonic markers are used to identify the various types of operation macro
and insert:

e. OPMK. This identifies an ordinary operation macro and has value 0.
f. LOCMK . This identifies a local NEC macro and has value 1.

g. UINSMK. This identifies an unprotected insert and has value 2.

h. PINSMK. This identifies a protected insert and has value 3.

i. STRMK . This identifies a straight-scan macro and has value 4.

The following markers may follow the specification of a delimiter (in the case of this set of
markers, as for the previous set, the implementor need not, in fact, be concerned with their
meanings; he only needs to know what to replace them by).

J- ENDCHN. This identifies a closing delimiter and has value zero. It also serves as
an end-of-chain marker.

k. EXCLMK. This identifies an exclusive delimiter.

L WITHMK. This is used in implementing the WITH keyword in ML/I.

m. WTHSMK . This is used in implementing the WITHS keyword in ML/I.

n. SPCSMK . This is used in implementing the SPACES keyword in ML/I.

Four distinct values should be chosen for EXCLMK, WITHMK, WTHSMK and SPCSMK. Each value
should be a number larger in absolute value than the largest possible workspace size (see
Section 2.8 [Use of Storage and Stacks|, page 8).

Finally there are two constants dependent on the value N described in Chapter 6 of
the ML/I User’s Manual. The value of N is dependent on the width of listings but a typical
value would be 30.

0. TEXMAX. This has value 2N.
p. HTMAX. This has value N-4.

3.4 Indirect Addresses

In addition to constants and variables, statements in L may involve indirect addresses.
These are represented by the IND macro, which is described below.
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Purpose
Specifies indirect address.
General Form

IND ( arithmetic expression ) (CH)
(NM)
(PT)
(sw)

(Arithmetic expressions are defined in Section 3.6 [Arithmetic Expressions],
page 16).
Structure Representation
IND WITH ( OPT ) WITH CH OR ) WITH NM OR ) WITH PT OR ) WITH SW ALL
Ezamples
a. IND(SPT)CH
b. IND(HASHPT + TEMP - OF (LCH))SW
c. IND(AD(KSPACE)PT)NM

Restrictions

The arithmetic expression must not itself contain an indirect address. The
result of the arithmetic expression is a pointer.

Action

IND specifies an item of the data type given by the last two letters, which is
accessed indirectly via the pointer. This item will lie in workspace or in the
data SECTIONS.

Notes

The mapping macro for IND normally requires to be carefully planned. It
should only be called from within another macro and this macro should pass
down to the IND macro an indication as to what to do with the indirectly
addressed item (e.g. add it, store into it, etc.). It is often convenient to build
IND into the expression evaluation macro, which will be outlined later.

3.5 Notation for Describing Arguments

It is necessary at this stage to define a notation that will be needed in subsequent Sections
to specify the form and type of arguments. In this notation an argument will be specified
by writing:

form-type
where form consists of a sequence of one or more of the following letters:

v for variable

C for constant

I for indirect address
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and type consists of one or more of the letter pairs CH, NM, PT, SW. These letter pairs represent
the data types. form and type indicate the various forms and types an argument may take.
For example VI-SW means a variable or indirect address of type switch and C-NMPT means
a constant of type number or pointer.

3.6 Arithmetic Expressions

Several statements in L allow arithmetic expressions as arguments. There is no explicit
expression evaluation macro, but an artificial macro for this purpose will need to be set up
as outlined below. The specifications of arithmetic expressions are as follows:

General Forms

a. <<I-NMPT ?>> <<(+) V-NMPT *7>> <<(+) C-NM >>

) )
where at least one constituent is not null.
b. C-PT
Ezamples
a. -6
b. IND(SPT)NM + IDLEN - 3
c. — SKVAL + OF (LPT+LSW)
d. SPT - ARGNO - SDBSZ
e. AD (KSPACE)PT

Action

Evaluate the arithmetic expression by the normal rules of arithmetic. The
result of the expression will be a number or a pointer (adding or subtracting
a number or a pointer yields a pointer, and subtracting two pointers yields a
number).

Notes

Calls of the macro for expression evaluation must be artificially set up by
other macro calls. Thus for example the SET macro might call:

EXPR %AT1.

where EXPR was the expression evaluation macro. In this case EXPR might
have the structure representation:

OPT EXPR OR EXPR WITHS - ALL N1 OPT + N1 OR - N1 OR NL ALL

(EXPR would need to be called on a subsequent pass to the SET macro, or
the technique for creating dynamic macro calls described in Chapter 7 of the
ML/I User’s Manual would need to be used.) It might be found desirable to
build the IND and AD macros into the EXPR macro by making the EXPR macro
recognise occurrences of these within its arguments.
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4 Executable Statements

This chapter describes the statements that occur in the program SECTIONs. These are
divided into five categories as follows:

a. Statements for communicating with routines.

b. Compound statements.

c. Block moving statements.

d. I/O statements.

e. Assignment and branching statements.

4.1 Routines

L contains two types of routine, namely subroutines and linkroutines. These are declared
using the SUBROUTINE and LINKROUTINE statements and are both called using the CALL
statement. Declarations of subroutines or linkroutines are always global and are hence never
nested within other declarations. Declaration need not precede use, although it would be
possible to rearrange the logic of ML/I to make this so.

The following Sections describe subroutines and linkroutines together with how they
are declared and how they return when their actions are completed. After this the CALL
statement will be described.

4.1.1 Subroutines

Subroutines in L either have a single parameter, which may be of type number, switch or
pointer, or no parameter at all. In addition some subroutines require an exit label to be
supplied with each call. An exit label specifies a label to which the subroutine is to go if
some special condition arises.

The calls of subroutines always match their declarations in that if a subroutine has a
parameter it is always called with an argument of the same type and if it is declared to
have an exit label it is always called with one. A subroutine never changes the value of its
parameter.

A return from a subroutine is accomplished by the RETURN FROM or EXIT FROM state-
ments. These two statements, together with the SUBROUTINE statement, are described
below.

4.1.1.1 The SUBROUTINE statement

Purpose

Declares a subroutine.
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General Form

SUBROUTINE identifier << (PARPT) 7>> <<EXIT subsidiary comment 7>>
(PARNM)
(PARSW)

<< statement *>>

ENDSUB

Structure Representation

Preferably two separate macros.
1. SUBROUTINE OPT ( ) N1 OR N1 EXIT N2 OR N2 NL ALL
2. ENDSUB NL

Ezamples

The following are examples of first lines of subroutine declarations:
a. SUBROUTINE CMPARE (PARPT) EXIT //COMPARISON FAILS//
b. SUBROUTINE NOARGS

Restrictions

Action

Notes

Subroutines are never called recursively.

Set %A1. as the name of a subroutine. At the start of the subroutine generate
code to assign the argument (if any) to the parameter and, if necessary, pre-
serve the exit label and the return address in order that they may be available
to the RETURN FROM and EXIT FROM statements.

a. The last two letters of the parameter indicate its type. PARPT, PARSW
and PARNM are declared in the VARS SECTION of the logic just like other
variables. They could in fact be equated to one another in an L-map
where types were not differentiated, as the logic of ML/I is such that
there is never more than one parameter in existence at any one time, i.e.
if a subroutine A with a parameter calls a subroutine B with a parameter
then the logic is such that it does not matter if the parameter of A is
clobbered as a result of the call of B.

b. There are basically two possible techniques for preserving return ad-
dresses. Either each subroutine can have a unique storage location for
preserving its return address or a stack of return addresses (which must
be entirely separate from the other stacks) can be used. A problem with
the latter approach is that some GOTO statements jump out of subroutines
into the main logic without passing through the normal exit mechanism.
To help solve this problem each label referenced by such a GOTO is pre-
ceded by a statement prefix CSS, which can be mapped into instructions
to clear the subroutine stack.

c. The comment following EXIT is merely an aid to the reader of the logic.
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4.1.1.2 The RETURN FROM statement

Purpose

Return from a subroutine.
General Form

RETURN FROM identifier
Structure Representation

RETURN WITHS FROM NL
Ezample

RETURN FROM CMPARE
Restrictions

RETURN FROM statements always lie within a subroutine, the name of which is
given by %A1.

Notes

Return from the subroutine to the point of call.

4.1.1.3 The EXIT FROM statement

Purpose
Returns from a subroutine to an exit label.
General Form
EXIT FROM identifier
Structure Representation
EXIT WITHS FROM NL
Ezample
EXIT FROM CMPARE
Restrictions

EXIT FROM statements always lie within a subroutine, the name of which is
given by %A1., and this subroutine has an exit label.

Action
Go to the program label supplied as an exit label in the call of the subroutine.
Notes

Exit labels may be implemented in many different ways. Two possibilities
are:

1. To treat the exit label as an extra argument of the subroutine.

2. (when mapping into assembly language)
to code a statement of form:

CALL SUB EXIT LAB

as
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CALL SUB
GO TO LAB

In this case the EXIT FROM statement should cause a return to the point
of call and the RETURN FROM statement, within a subroutine with an exit
label, should cause a return to the point of call plus a suitable offset to
skip over the GO TO statement.

4.1.2 The linkroutine

The logic contains only one linkroutine, which is named STKARG. The mechanism of linkrou-
tines is included in L to cater for recursion, and STKARG may be regarded as a recursive
subroutine. It has no parameter or exit label and is called by the statement:

CALL STKARG

The difference between linkroutines and subroutines is that in subroutines the pre-
serving of the return address, if necessary, is the responsibility of an L-map whereas in a
linkroutine the return address must be assigned to the variable LINKPT when the routine
is called. LINKPT is one of the variables automatically preserved by the logic in recursive
situations, and hence the implementor does not need to bother about the problem. A return
from STKARG is accomplished by the LINK BACK statement.

If the object language is an assembly language then STKARG will normally be represented
as a subroutine and will present few problems. However in L-maps into high-level languages
it will usually not prove possible to represent STKARG as a subroutine because:

a. Return addresses are often not directly accessible in high-level languages,

b. STKARG, unlike a subroutine, contains a jump to a point outside itself, from where a
jump back into STKARG subsequently occurs (see Section 4.5.3 [The GO TO Statement],
page 32).

To surmount these difficulties it may be necessary to represent STKARG as a piece of labelled
code which is ‘called’ by setting LINKPT as the return address (or as an index to a switch,
in the ALGOL sense, of possible return addresses) and then performing the statement:

GO TO STKARG

Moreover it may be necessary to treat LINKPT as a special type of pointer since it points at
the program rather than the data.

4.1.2.1 The LINKROUTINE statement

Purpose
Declares a linkroutine.

LINKROUTINE identifier
<< statement >>

ENDSUB
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Structure Representation

Assuming ENDSUB to be a separate macro, the structure representation of the
LINKROUTINE statement is

LINKROUTINE NL
Ezample
LINKROUTINE STKARG
ENDSUB
Action

Set the identifier as a subroutine entry point or a label, as appropriate, and
generate code to store the return address in LINKPT.

Notes

It is possible, by defining CALL STKARG as a macro, to set LINKPT at the point
of call instead of when the linkroutine is entered.

4.1.2.2 The LINK BACK statement

Purpose
Returns from a linkroutine.
General Form
LINK BACK
Structure Representation
LINK WITHS BACK NL
Restrictions
LINK BACK occurs only within the linkroutine STKARG.
Action

Return to the address contained in LINKPT.

4.1.3 The CALL statement

Purpose
Calls a routine.
General Forms
a. CALL identifier << EXIT program label 7>>

b. CALL identifier (arithmetic expression) (NM)
(PT)
<< EXIT program label 7>>

c. CALL identifier (VIC-SW)SW << EXIT program label 7>>
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Structure Representation
CALL OPT ( ) N1 OR N1 EXIT N2 OR N2 NL ALL
Ezamples
a. CALL CMPARE ( IDPT + 1 )PT EXIT NOTFND
b. CALL NOARGS

Restrictions

The call must correspond to some SUBROUTINE or LINKROUTINE declaration
in the MI-logic, or to a subroutine in the MD-logic.

Action

Call the routine. If it has an argument, load the value (not the address) of
the argument into some fixed place (e.g. an accumulator) in order that it can
be assigned to the corresponding parameter. If there is an exit label, make
this available to the called routine.

Notes

In some L-maps it may be convenient to assign the argument to the corre-
sponding parameter at the point of call, rather than to load it into an accu-
mulator and then store this accumulator into the parameter when the routine
is entered.

4.2 Compound Statements

There are two compound statements in L, namely IF and CHAIN FROM. These are described
below.

4.2.1 The IF statement

Purpose
Conditional statement.
General Form
a. IF condition THEN statement
b. IF condition THEN
<< statement *>>
END
Structure Representation
See later.
Examples
a. IF SPT = IDPT THEN GO TO ENDID
b. IF IND(SPT)CH NE ’A’ THEN

END
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Restrictions

See next Section for the form of a condition.
In form a) the statement is never an IF or CHAIN FROM statement. Statements
of form b) are never nested within one another.

Action
Perform the statement(s) if the condition holds.
Notes
a. It is probably best to consider END as a separate macro from IF.

b. In form a) the closing newline acts as a closing delimiter of both the IF
statement and the statement following THEN. There are three possible
ways of dealing with this:

1. Turn form a) into form b) (or something of similar syntax) on a
prepass.

2. Treat newline as an exclusive delimiter of all statements except IF
and CHAIN FROM.

3. Make IF a straight-scan macro and, when dealing with form a), insert
the last argument in the following way:

MCDEF ZZ AS <YWAT1.
>
Z7Z

The first approach is probably the simplest.

c¢. Many L-maps will wish to recognise THEN GO TO as a special case, in order
to generate better code.

4.2.1.1 The Form of an IF Condition

General Form
The condition of an IF statement can have the following form:
a. relation
b. relation << & relation *>>

c. relation << | relation *>>

where & means ‘and’ and | means ‘or’ (note that ‘and’ and ‘or’ cannot both
occur in the same condition).
A relation can have the following forms:

a. arithmetic expression (GR) VCI-PTNM
(GE)
(LE)
(=)
(NE)
b. VI-SW (= ) VIC-SW
(NE)
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c. I-CH (=) IC-CH
(NE)

GR means ‘greater than’, GE means ‘greater than or equal to’, LE means ‘less
than or equal to’, and NE means ‘not equal to’.
Ezamples
a. IF SPT - IDPT GE 6 | IND(PARPT)SW NE 3 THEN ...
b. IF AAA =1 & BSW NE 2 & CCC + DDD GR EEE THEN ...

Restrictions

In form a) of a relation the arithmetic expression never contains a constant as
a constituent, i.e. constants only appear after rather than before a relational
operator. If an indirect address appears after the relational operator, this
always takes the form IND(V-PT)...

Action
Test whether the condition holds.
Notes

The data types to be compared can be found by examining the last two
characters of the first argument.

4.2.1.2 Structure Representation for the IF Statement

The structure representation corresponding to the IF statement will vary considerably be-
tween L-maps. If THEN GO TO was to be recognised as a special case then a prepass might
perform the transformation:

MCDEF THEN WITHS GO WITHS TO AS THENGO
MCSKIP D,THEN WITHS NL

MCDEF THEN NL AS <<THEN>

%AL.

END

>

In this case the delimiter structure corresponding to the IF and END statements could
consequently be:

1. IF N1 OPT GR OR GE OR = OR NE OR LE ALL OPT THEN WITH NL OR THENGO NL
OR | N1 OR & N1 ALL

2. END NL

4.2.2 The CHAIN FROM statement

Purpose

Follows down a chain where the next link is given by its offset from the current
link.
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General Form

CHAIN FROM arithmetic expression EXIT program label
<< statement *7>>
ENDCH

ENDCH is regarded as a separate statement in that it may be preceded by the
placing of a program label.

Structure Representation
Two macros:
1. CHAIN WITHS FROM EXIT NL
2. ENDCH NL

Ezample

CHAIN FROM IDPT + QF(LNM) EXIT JC1
SET IND(CHANPT)NM = 0
ENDCH

Restrictions

The arithmetic expression yields a pointer as value. Calls of the CHAIN FROM
statement are never nested within one another.

Action
Taking CHAIN FROM as two macros as indicated in its suggested structure rep-
resentation, the first macro is equivalent to:

SET CHANPT = %Al.
IF CHANPT = NULLPT THEN GO TO %A2.
[Lab] SET CHLINK = IND(CHANPT)NM

and the ENDCH macro is equivalent to:

IF CHLINK NE ENDCHN THEN
SET CHANPT = CHANPT + CHLINK
GO TO Lab

END

where Lab is some generated label unique to the call of CHAIN FROM, and
ENDCHN and NULLPT are the constant-defining macros described in Section 3.3.4
[Constants Represented by Identifiers], page 13.

4.3 Block Moving Statements

L contains three statements for moving about contiguous blocks of information. These
statements are MOVE FROM, MSTACK FROM and MUNSTACK FROM. Each statement requires three
arguments as follows:

a. A pointer to the start of the block to be moved.
b. A pointer to the start of the area to be moved to.
c. A length of the block to be moved.
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(in the case of MUNSTACK FROM, argument b) is implicit). Argument c) is always represented
by an arithmetic expression, yielding a positive (non-zero) numerical value, and each of
arguments a) and b) may be represented in either of two ways, depending on the area
pointed at:
a. If the area pointed at is in workspace or the data SECTIONSs then the argument is
specified by an arithmetic expression yielding a pointer as result.
b. If the area pointed at is in the VARS SECTION then the argument is specified by:
BLOCK ( name )
where the name is the name of a block of variables declared by the BLOCKDEC statement
(see Chapter 5 [Declarative Statements and Initial Values|, page 37). BLOCK can be
regarded as a constant-defined macro of type pointer. It is only used within arguments
to block moving statements. Many L-maps will treat BLOCK in exactly the same way
as the AD macro (see Section 3.3.3 [The AD and BLOCK macros]|, page 12).

The descriptions of the three block moving statements are written in terms of loops
using the local variables LV1, LV2, LV3 and LV4. However an L-map need not follow the
exact descriptions of these statements, provided that the overall effect is not altered. In
particular the variables LV1, LV2, LV3 and LV4 need not be used. In fact the whole purpose
of the block moving statements is to allow efficient code specially tailored to the object
machine to be inserted.

4.3.1 The MOVE FROM Statement

Purpose
Moves a block of information from one place to another.
General Form
MOVE FROM arg A TO arg B LENG arg C << BACKWARDS 7>>
Structure Representation
MOVE WITHS FROM TO LENG OPT BACKWARDS N1 OR N1 NL ALL
Example
MOVE FROM BLOCK(SDB) TO IDPT + OF(LNM) LENG SDBSZ
Restrictions
See general description of block moving statements.
Action
a. In the BACKWARDS case, which is used only when two fields may overlap
and upset a forwards move, the action is equivalent to:
SET LV1 WAL,
SET LV2 LVl + %A3. - OF(LCH)
SET LV3 = %A2. + %A3. - OF(LCH)
[XX] SET IND(LV3)CH = IND(LV2)CH
IF LV2 NE LV1 THEN
SET LV2 = LV2 - OF(LCH)
SET LV3 = LV3 - OF(LCH)
GO TO XX
END
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b. If the BACKWARDS option is not specified, a forwards move is performed in
the following way:

SET LV2 = %Al.
SET LV3 = %A2.
SET LV1 = LV2 + %A3. - OF(LCH)

[YY] SET IND(LV3)CH = IND(LV2)CH
IF LV2 NE LV1 THEN
SET LV2 = LV2 + OF(LCH)
SET LV3 = LV3 + OF(LCH)
GO TO YY
END

4.3.2 The MSTACK FROM Statement

Purpose
Stacks a block of information.
General Form

MSTACK FROM arg A LENG arg C ON (FSTACK)
(BSTACK)

Structure Representation

MSTACK WITHS FROM LENG ON NL
Ezample

MSTACK FROM IDPT LENG IDLEN ON FSTACK
Restrictions

See general description of block moving statements.
Action

a. If %4A3. is BSTACK, the action is equivalent to the statements:

CALL DECLF ( %A2.)NM
MOVE FROM %A1. TO LFPT LENG %A2.

b. If %A3. is FSTACK, the action is equivalent to the statements:

SET LV4 = FFPT
CALL BUMPFF (%A2.)NM
MOVE FROM %A1. TO LV4 LENG %A2.

4.3.3 The MUNSTACK FROM Statement

Purpose
Unstacks a block of information from the backwards stack.
General Form

MUNSTACK FROM arg A TO arg B LENG arg C FROM BSTACK
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Structure Representation

MUNSTACK WITHS FROM TO LENG FROM WITHS BSTACK NL
Ezample

MUNSTACK FROM STAKPT TO BLOCK(EDB) LENG 3
Restrictions

See general description of block moving statements.
Action

The action is equivalent to the statements:

MOVE FROM %A1l. TO %A2. LENG %A3.
SET LFPT = %A1l. + %A3.

(note that %A1. might be LFPT and hence the ordering of the two above
statements should not be changed to try and improve efficiency.)

4.4 1/0 Statements

There are three statements in L that deal with I/O, namely READ, OUTPUTID and PRTEXT.
These statements deal respectively with the input text, the output text and error messages.
In addition certain of the machine-dependent subroutines deal with the production of error
messages (see Section 7.2 [Subroutines for Error Messages]|, page 48). READ and OUTPUTID
each occur only once in the logic. However they have been represented as statements in L
rather than as machine-dependent subroutines in order that, for reasons of efficiency, they
can be replaced by in-line code on an L-map (if the object language has a macro facility,
it may be convenient, for ease of changing, to map I/O statements into object language
macros).

ML/T has a single stream of input. However there may be several streams of output as
follows:

. Output text in a form that can be read back in.

a
b. Listing of output text.

o

Listing of input text.

&

Listing of error messages and other diagnostic information (this is called the debugging
file in the ML/I User’s Manual).

Alternatives b) and c) are optional and need not be available on all implementations of
ML/I.

4.4.1 The READ Statement

Purpose

Reads in the input text.
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General Form
READ

Structure Representation
READ NL

Action

Read one character of input and translate it to internal code. If appropriate
check that the character is legal and, if not, perform the action:

CALL ERSIC

and replace the character by the error character for the implementation. Then
place the character on the top of the forwards stack by performing the follow-
ing action:

SET IND(FFPT)CH = character
//UPDATE STACK POINTER//
SET FFPT = FFPT + OF(LCH)
//TEST FOR OVERFLOW//

IF FFPT GE LFPT THEN GO TO ERLSO

The READ statement should make each line of input end with the character
‘newline’. In the case of card input this character may need to be added to
each line and in the case of paper tape input the pair of characters ‘carriage
return, line feed’ may need to be mapped into the single character ‘newline’.

If appropriate the READ statement should provide a listing of the input with
accompanying line numbers. When the input is exhausted the READ state-
ment should return the character represented by STOPCODE (see Section 3.3.4.3
[Character Constants], page 14). The logic is arranged so that if a STOPCODE
is returned then the READ statement is not executed again but control goes
to the label MDHALT (see Section 7.3.3 [The MDHALT Label], page 51) instead.
If the input is split up into several physical units (e.g. several separate paper
tapes), the READ statement should take care of the interface between different
units.

The READ routine also has responsibility for taking action at the boundary
between lines. At the start of each line, including the first, the following
action should be performed:

SET 82 = S2 + 1
IF LINECT = TLINCT THEN SET TLINCT = S2
SET LINECT = S2
IF S2 = 1 THEN insert startline character
at beginning of line
where S1 and S2 are S-variables. This action should not be performed on
the very last line, i.e. between the last newline and the STOPCODE at the end.
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Any unused internal code can be chosen for startline. This is defined by the
LAYCHAIN statement (see Section 6.2.2 [The LAYCHAIN statement], page 42).

To summarise, the action of the READ statement should be to make the input
text appear as a single sequence of characters, with the character ‘newline’
at the end of each line, the character STOPCODE at the end of the text, and
startline characters inserted where appropriate.

4.4.2 The QUTPUTID Statement

Purpose

Produces output.
General Form

OUTPUTID
Structure Representation

OUTPUTID NL
Action

Output a sequence of characters. The sequence is pointed at by IDPT and
the number of characters in the sequence is given by IDLEN. IDLEN is always
greater than zero and can be arbitrarily large. The values of IDPT and IDLEN
may be clobbered by the QUTPUTID statement.

Normally output should be sent to a device that can then be read back in by
the job step that comes after macro processing. It may also be desirable to
produce a listing of the output, on option.

OUTPUTID should, if necessary, translate characters to the code required by
the external device. It may be necessary to take special action with the
character ‘newline’. The marker STOPCODE is never sent to the OUTPUTID
routine. Instead it is the responsibility of the code at MDHALT (see Section 7.3.3
[The MDHALT Label], page 51) to finalise the output. Startline characters
should be ignored.

4.4.3 The PRTEXT Statement

Purpose
Prints literal strings within error messages.
General Form
PRTEXT [ << character *>> ]
Structure Representation
PRTEXT WITHS [ N1 OPT $ N1 OR ] WITH NL ALL
Ezample
PRTEXT [$PROCESS ABORTED$]
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Restrictions

The set of possible characters occurring within the argument to PRTEXT is the
same as for the quote macro (see Section 3.3.2 [The Quote macro|, page 12).

Action

Print the argument as a string of characters on the error message listing. Each
character stands for itself except $, which represents a newline.

Notes

a. PRTEXT should be mapped with a straight-scan macro. Arguments should
be inserted using %WB1. etc. It is usually convenient to deal with $ by
treating it as a delimiter of PRTEXT as suggested by the above structure
representation.

4.5 Assignment and Branching Statements

A list of all the L statements used to perform assignment or branching operations follow.
The statements are arranged in alphabetical order.

4.5.1 The BACKSPACE Statement

Purpose
Examines former value of a variable now lying on BSTACK.
a. BACKSPACE V-NMPTSW
b. BACKSPACE V-NM GIVING V-NM
c. BACKSPACE V-PT GIVING V-PT
d. BACKSPACE V-SW GIVING V-SW

Structure Representation
BACKSPACE OPT GIVING N1 OR N1 NL ALL
Ezamples
a. BACKSPACE SPT
b. BACKSPACE SPT GIVING IDPT

Restrictions

%A1. is in the block that is called SDB (see BLOCKDEC statement of Chapter 5
[Declarative Statements and Initial Values], page 37).

Action

Let N be the offset of %A1. from the start of the SDB block (i.e. the number of
units of storage occupied by the variables preceding %A1. in the SDB block).
Then the action taken for the respective forms is:

a. SET TEMPT = DBUGPT + N

b. SET %A2. = IND(DBUGPT + N)NM

c. SET %A2. = IND(DBUGPT + N)PT
d. SETSW %A2. = IND(DBUGPT + N)SW

In cases b) to d) TEMPT may be clobbered.
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4.5.2 The CHARMATCH Statement

Purpose

Multi-way conditional branch statement.
General Form

CHARMATCH V-PT <<, C-CH GOING program-label *>>
Structure Representation

CHARMATCH N1 OPT , GOING N1 OR NL ALL
Ezample

CHARMATCH IDPT, ’A’ GOING INSA, ’B’ GOING INSB
Action

The action is equivalent to:

IF IND(%A1.)CH = %A2. THEN GOTO %A3.
IF IND(%A1.)CH = %A4. THEN GOTO %A5.

IF IND(%A1.)CH

%AT1-1. THEN GOTO %AT1.

It is quite possible for none of the above tests to hold.

4.5.3 The GO TO Statement

Purpose

Branch statement.
General Form

GO TO identifier
Structure Representation

GO WITHS TO NL
Ezample

GO TO BSNEXT
Restrictions

The identifier is a program label or a label in the MD-logic. A GO TO state-
ment never goes into a subroutine from outside (it may, however, go out of a
subroutine to a label outside and it may go into the linkroutine from outside
and vice versa).

Action

Branch to designated label.
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4.5.4 The SCALE Statement

Purpose
Multiplies a variable by a constant.
General Forms
a. SCALE V-NM BY C-NM
b. SCALE V-NM BY C-NM GIVING V-NM

Structure Representation
SCALE BY OPT GIVING N1 OR N1 NL ALL
Ezample
SCALE MEVAL BY OF(LNM) GIVING ARGNO
Restrictions
%A2. is a small positive constant (not greater than 2*LPT).
Action
Multiply %A1. by %A2., and assign the result to %A3. if %A3. exists; otherwise
to %A1.
Notes

The constant will always be a call of the OF macro (see Section 3.3.1 [The OF
and length-defining macros], page 11) and it may often have value 1, in which
case the replacement text for form a) could be null.

4.5.5 The SET Statement

Purpose
Assigns a value to a number or a pointer.
General Form
a. SET VI-NMPT <<, V-NMPT *7>> = arithmetic expression
b. SET VI-NM = VI-SW

Structure Representation
SET N1 OPT , N1 OR = ALL NL
Ezamples
a. SET IND(SPT)NM, ARGLEN = IND(IDPT)NM+TEMP-6
b. SET SKVAL = - SKVAL + 1
c. SET TYPE = INSW
d. SET IDLEN = IDLEN + IDPT - SPT

Restrictions
All the quantities to the left of the equals sign are of the same type. If any
quantity occurs on both the left and the right of the equals sign then it must
be the first quantity on the right, as illustrated by examples ¢) and d) above.
Action
Evaluate the arithmetic expression and assign its value to the variables and /or
indirect address on the left of the equals sign.
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4.5.6 The SETSW Statement

Purpose

Assigns a value to a switch.
General Forms

a. SETSW VI-SW <<, V-SW *x7>> = VIC-SW
b. SETSW VI-SW = VI-SW (&) VC-SW
)

Structure Representation

SETSW N1 OPT , N1 OR = ALL OPT | N2 OR & N2 OR N2 NL ALL
Ezamples

SETSW IND(TEMPT)SW, PARSW = 1
SETSW COPDSW = IND(INFOPT)SW & 1

Restrictions
If form b), %A1. cannot be the same as %A3. (e.g. the form:
ASW = arg & ASW
cannot occur).
Action

Evaluate the expression to the right of the equals sign (| means ‘inclusive
or’ and & means ‘and’) and assign its value to the variable(s) and/or indirect
address on the left.

4.5.7 The STACK Statement

Purpose
Stacks individual values.
General Form

STACK << value (type) *>> ON (FSTACK)
(BSTACK)

where value is one of the following forms:
a. VCI-SW in which case type is SW.

b. arithmetic expression in which case type is NM or PT.

Structure Representation

STACK N1 OPT ( ) N1 OR ON ALL NL
Ezample

STACK PARSW(SW) 3(NM) TRUE(SW) IDPT-1(PT) ON FSTACK
Restrictions

In the FSTACK case, if the forwards stack pointer (FFPT) occurs within a value it
occurs within the first value. In the BSTACK case the backwards stack pointer
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(LFPT) is never used (these two restrictions make optimisation of multiple
stacking operations possible, though care must be taken not to bump FFPT
until after the first value has been calculated).

Action

a. If the last argument is FSTACK, the following operation should be per-
formed for each value and type:

1. If type is NM or PT then

SET IND(FFPT)type = value
2. If type is SW then
SETSW IND(FFPT)SW = value

followed in each case by
CALL BUMPFF (N )NM

where N is the value of OF(L type) — see Section 3.3.1 [The OF and
length-defining macros|, page 11). Thus, for example:

STACK IDPT - 1(PT) ON FSTACK
is equivalent to:

SET IND(FFPT)PT = IDPT - 1
CALL BUMPFF (OF (LPT))NM

b. In the BSTACK case, the following operations should be performed for each
value and type:

CALL DECLF ( N )NM
where N is the value of OF(L type), followed by either:
1. SET IND(LFPT) type = value or
2. SETSW IND(LFPT)SW = value

depending on type.
Notes

a. In most L-maps it should be possible to optimise multiple stacking op-
erations by bumping the stack pointer only once for the whole set of
value(s) to be stacked. However the STACK statement occurs relatively
infrequently so there is no need to worry too much about optimisation.

b. The values must be stacked in the order specified.
4.5.8 The TEST Statement

Purpose
Multi-way branch statement.
General Form

TEST V-NMSW GOING program label <<, program label *>>
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Structure Representation
TEST TYPE GOING N1 OPT , N1 OR NL ALL
Ezample
TEST TYPE GOING SKIP, INS, WARN
Restrictions
The value of %A1. lies between 0 and %T1-2. (inclusive).
Action

The action is equivalent to:

IF %A1. = 0 THEN GO TO %A2.
IF %A1. = 1 THEN GO TO %A3.
IF %A1. = %T1-2. THEN GO TO %AT1.

4.5.9 The UNSTACK Statement

Purpose

Unstacks individual variables.
General Form

UNSTACK << V-NMPT ( (NM) ) *>> FROM BSTACK

(PT)

Structure Representation

UNSTACK N1 OPT ( ) N1 OR FROM WITHS BSTACK WITHS NL ALL
Ezample

UNSTACK DELPT(PT) MTCHPT(PT) MCHLIN(NM) FROM BSTACK
Restrictions

The parenthesised letters indicate the type of the preceding variable. The
backwards stack pointer (LFPT) never occurs as an argument to UNSTACK.

Action
For each variable, starting with the first and ending with the last, the action
should be:
SET variable = IND (LFPT) (NM)

(PT)
SET LFPT = LFPT + OF( (LNM) )
(LPT)
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5 Declarative Statements and Initial Values

The VARS SECTION contains all the declarative statements in L. Every variable is declared
exactly once. All variables have global scope.

A glance at the VARS SECTION will show that some groups of declarations are organ-
ised into BLOCKs. This means that all the variables should be allocated contiguous storage
(although any or all of them can be aligned as would be required, for instance, on Sys-
tem/360). This grouping is to allow the variables to be moved about as a single unit using
the block moving statements of Section 4.3 [Block Moving Statements], page 25. For exam-
ple all the variables describing the state of scan in ML/I are grouped into a BLOCK so that
the whole lot can conveniently be stacked when a macro call is processed. Corresponding
to each BLOCK is a constant-defining macro denoting its size (see Section 3.3.4.4 [Number
Constants], page 14).

A block is written thus:
BLOCKDEC identifier, subsidiary comment

<< declarative statement *>>

ENDBLOCK identifier

The same identifier follows both BLOCKDEC and ENDBLOCK and acts as the name of the block.
Block names occur as arguments to the BLOCK macro described in Section 4.3 [Block Moving
Statements], page 25. The declarative statements may be DEC statements or (in one case
only in the current logic of ML/I) nested block declarations.

If BLOCKDEC and ENDBLOCK are regarded as separate macros, their structure represen-
tations could be:

a. BLOCKDEC , NL
b. ENDBLOCK NL

5.1 Static and Dynamic Initialisation

Depending on the environment in which ML/I is to be run, program variables may be
initialised statically (i.e. the initial value is loaded into the storage occupied by the variable)
or dynamically (i.e. instructions are executed at the start of each ML/I process to set up
the initial values). Dynamic initialisation obviates the need to reload ML/I between one
process and the next.

In order that either kind of initialisation can be performed, the logic of ML/I contains
initialisation information in two places, viz:

a. As an argument to DEC, the declarative statement.
b. In a SECTION of the logic called INVALS, which contains a series of assignment state-

ments.

In each L-map one of these will be ignored and the other will cause code to be generated.
The INVALS SECTION can be deleted by the skip:
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MCSKIP SECTION WITHS INVALS ENDSECT WITHS INVALS

Each assignment statement (SET or SETSW) in the INVALS SECTION is preceded by the com-
ment /- IN -/ to allow special action to be taken. For example if all storage is initially
zeroised statements of form:

/- IN -/ SET XXX = 0

could be ignored.

5.2 Declarative Statements for Single Variables

The two declarative statements used in L to declare individual variables are DEC and EQUATE.
These are described below.

5.2.1 The DEC Statement

Purpose

Declares and reserves storage for a single variable.
General Form

DEC V-NMPTSW << INIT C-NMPTSW 7>>
Structure Representation

DEC OPT INIT N1 OR N1 NL ALL
Ezamples

a. DEC INSW

b. DEC GHSHPT INIT AD(GHSHTB)PT

Restrictions

If there is an initial value for a variable it is of the same data type as the
variable.

Action

Reserve storage for the variable. If static initialisation is to be performed then
the initial value, if any, should be placed in the storage reserved.

5.2.2 The EQUATE Statement

Purpose

Sharing of storage between two variables.
General Form

EQUATE V-NMPTSW TO V-NMPTSW
Structure Representation

EQUATE TO NL
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Example
EQUATE WNIDPT TO ERIAPT
Restrictions

%A1. and %A2. are of the same data type. %A2. has been previously declared
using the DEC statement.

Action

The storage for %A1. is made coincident with that for %A2. (alternatively if
this is, for some reason, undesirable, then %A1. may be given storage of its
own exactly as if it had been an argument to the DEC statement).



Implementing software using the L language — Second Edition

6 The Data SECTIONSs

The data SECTIONSs contain the descriptions of the data required by the logic of ML/I.
This consists of keywords, various tables and the names of the operation macros and their
delimiters.

There are four special statements and two special constant-defining macros needed in
the data SECTIONs. These are described below. Labels occur in the data SECTIONs but
these data labels always precede the DC statement. No alignment should be performed in
the data SECTIONS, i.e. in machines such as IBM System/360 where some data is often
aligned to word boundaries, this alignment should be suppressed.

6.1 Constant-Defining Macros for Data

Descriptions of the two extra constant-defining macros used exclusively in the data SEC-
TIONSs follow.

6.1.1 The RL Macro

Purpose
Specifies a relative link.
General Form
RL ( data label << (+) C-NM *>> )
)
Structure Representation
RL WITHS ( )
Examples
a. RL(DUNLES)
b. RL(DSEMIC + OF (LNM))

Restrictions

RL occurs only as an argument to the DC or OPMAC statements.
Action

Generate numerical constant having value

address specified by }Al. - address occupied
by constant itself

Notes

If the object language is an assembly language where the location counter is
specified by *, the replacement text of RL might be

%AL. - *

In the current logic of ML/I the resultant constant is always positive.
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6.1.2 The LID Macro

Purpose

Specifies a data field consisting of a character constant preceded by its length.
General Form

LID[<< character *>>]
Structure Representation

LID WITHS [ ]
LID should be a straight-scan macro.

Ezample
LID[OPT]
Restrictions

LID occurs only as an argument to the DC statement. The restrictions on LID
otherwise are the same as apply to an occurrence of the quote macro in the
data SECTIONS.

Action

Generate a constant consisting of a number representing the length of the
argument (i.e. MCLENG (%WB1.)) multiplied by OF (LCH) followed by a character
string constant representing the argument.

Notes

The LID macro might need to call the quote macro, which is a straight-scan
macro. If so the call could be performed thus:

MCDEF TMP AS <’>%WB1.<’>
TMP

6.2 Data-Defining Statements

Descriptions of the statements for defining data follow.

6.2.1 The DC Statement

Purpose

Specifies a list of constants.
General Form

DC argument <<, argument *7>>
Structure Representation

DC N1 OPT , N1 OR NL ALL
Ezample

DC 1,LID(XYZ) ,ENDCHN,RL(KOR-OF (LNM))
Restrictions

Each argument is one of the following:
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a. a call of the RL or LID macros.
b. a call of the quote macro.
c. a constant of type number. This may be specified literally or by means
of a constant-defining macro.
Action
Generate sequence of data constants as specified by the list of arguments.
Notes

DC may be labelled and, if so, the label should refer to the first data constant
generated.

6.2.2 The LAYCHAIN Statement

Purpose
Specifies the structure representation keywords for layout characters.
General Form
LAYCHAIN
Structure Representation
LAYCHAIN NL
Restrictions
LAYCHAIN only occurs once in the logic of ML/I.
Action

LAYCHAIN is replaced by specifications of the keywords to be used in structure
representations to represent layout characters. Each specification should be
represented by:
DC RL(next), RL(rep), LID(name), ENDCHN
where name is the name of the keyword, rep is the address of the character
represented by the keyword (this is supplied by the HETABLES statement, which
is described later) and next is the address of the next keyword specification.
In the case of the last specification next is KSPACS.
Notes

a. For reasons of compatibility the following standard names are to be pre-
ferred when applicable:

SPACE representing space.
NL representing newline.
SL representing startline.
TAB representing tab.

b. The keyword SPACES forms part of the main logic and is not supplied by
the LAYCHAIN statement. LAYCHAIN should always supply a keyword to
represent a single space.
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c. As an example of LAYCHAIN, if the two keywords SPACE and NL are re-
quired, then LAYCHAIN should be replaced by:

DC RL(KNL),RL(RSPAC),LID[SPACE],ENDCHN
[KNL] DC RL(KSPACS),RL(RNL),LID[NL],ENDCHN

where the following is supplied as part of the HETABLES statement;:

[RSPAC] DC ’ °
[RNL] DC ’$°

6.2.3 Hash-Tables and their Definition

In order to speed up the recognition of construction names, the logic of ML /T uses a hashing
technique. This involves the use of tables of pointers called hash-tables. The size of these
tables, which is machine-dependent, is given by the constant defining macro LHV. Typical
values of LHV are 16*LPT for a machine with 8K words, 32*LPT for a machine with 16K
words and 64*LPT for a larger machine, where LPT is the amount of storage occupied by a
pointer.

Each implementation has its own hashing function (see Section 7.1.2 [The MDFIND
Subroutine], page 47) which maps the set of all possible atoms evenly into the values:

0, LPT, 2*LPT, 3*LPT, ..., LHV-LPT

Each hash-table entry is the head of a (possibly null) chain of pointers, which joins together
all construction names whose first atom hashes to the number given by the offset of the
hash-table entry from the start of the hash-table. Thus the first hash-table entry represents
value 0, the second LPT, and so on. When an atom of text is scanned it is mapped into a
number by the hashing function and then compared with all the construction names on the
relevant hash chain.

When implementing ML/T it is necessary to define a hash-table that reflects the initial
state of the environment (in early implementations of ML /I there were two such hash-tables,
one global and one local, but these have now been combined). For most implementations
the initial state of the environment will consist only of the operation macros. These need to
be connected together on the relevant chains, with the chain heads in the initial hash-table.

6.2.3.1 The HETABLES Statement

Purpose
Specifies miscellaneous pieces of data.
General Form
HETABLES
Structure Representation
HETABLES NL
Restrictions

HETABLES only occurs once in the logic of ML/I.



Implementing software using the L language — Second Edition

Action

a. Reserve storage and set initial values for the two following tables (note
that the ‘Size’ value is expressed in terms of constant-defining macros):

Name Size Initial Values
ERBLOC EDBSZ None
GHSHTB LHV + 4%LPT + LSW See below

In each case the name should be attached to the start of the table (the
names are used as arguments to the AD macro). The initial value of
GHSHTB should be as follows:

Number and type Value

LHV/LPT pointers Heads of hash chains

4 pointers Any value greater than or equal to the high-
est possible value for a pointer.

1 switch 7

The GHSHTB table (as distinct from the values of the S-variables — see
below) is never changed during the running of ML/I and therefore does
not need to be reset if ML/I is restarted without being reloaded.

b. Define the layout characters required by the LAYCHAIN statement. Each
layout character should be preceded by a data label so it can be referenced
by the corresponding keyword. All these layout character representations
must be supplied explicitly by HETABLES and no attempt must be made
to “common them up” with representations lying elsewhere in storage.

c. Reserve storage for the S-variables. Let N be the number of S-variables
for the implementation (N should not be less than 9). Then N+1 numbers
should be reserved. The last number should contain the value of N and
should be labelled SVEC. The remaining numbers contain the values of the
S-variables in inverse order, i.e. the first is S(N) and the last S(1). These
should be given appropriate initial values, either statically or dynamically.
S1 to S9 should be initially zero. Thus for example if N was 10 the S-
variables might be set up thus:

n¢ 0,0,0,0,0,0,0,0,0,0
[SVEC] DC 10

6.2.4 The OPMAC Statement

Purpose

Specifies data representing operation macro.
General Form

OPMAC C-CH << + C-CH ?>> , C-NM,C-NM,C-NM
Structure Representation

OPMAC OPT + N1 OR N1 , ALL , , NL
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Examples

Action

Notes

a.
b.

OPMAC *MCNODEF’ ,ENDCHN,LOCMK, 1
OPMAC °MCSUB’+’ (’ ,RL(DCOM1) ,0PMK, 14

Generate series of constants representing the operation macro and its at-
tributes. These constants are as follows:

Type Value

Pointer Hash chain pointer.

Number Value of ENDCHN constant-defining macro.

Number Length of macro name (i.e. MCLENG(%WA1.-2) mul-
tiplied by OF (LCH)).

Characters Character string represented by %WA1.

Number Value of WTHSMK constant-defining macro.

Number Length of second atom of macro name (i.e.
MCLENG (%WA2.) -2 multiplied by OF (LCH).

Characters Character string represented by %WA2.

Number Value of %AT1-2.

Switch Has value 1 (denotes operation macro).

Number Value of %AT1-1.

Number Value of %AT1.

Ttems 4a), 4b) and 4c) will be present only if the additional argument
(introduced by +) is present.

The hash chain pointer will normally need to be filled in by hand. Fur-
thermore the result of each 0PMAC will normally need to be given a created
label in order that a hash pointer can reference it.

The last argument is a decimal number. This is the only place in the logic
of ML/I where a number greater than 7 is specified literally (as distinct
from by means of a constant-defining macro). Special action may be
necessary with this argument if the object language works in, say, octal
or hexadecimal.
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7 The MD-logic

The MD-logic of ML/I consists of a number of pieces of machine-dependent code each of
which is either represented as a subroutine or designated by a label. The complete list of
subroutines is: MDCONV, MDERPR, MDFIND, MDINIT, MDNUM, MDOP, MDQUOT and MDTEST, and
the complete list of labels is MDABRT, MDGOBC and MDHALT, together with some initialisation
code.

With the exception of MDTEST and MDFIND these pieces of code are not heavily used and
they may be written to be as concise as possible rather than as fast as possible. They should
use their own variables for intermediate working and should not clobber any variables used
in the MI-logic unless this is explicitly allowed.

The pieces of code are grouped under four categories, which will be discussed in the
order below:

a. Code dependent on internal representation.
b. Subroutines for error messages.

c. Initialisation and finalisation.

d. The MDOP subroutine.

7.1 Code Dependent on Internal Representations

This Section describes those parts of the logic of ML/I that are dependent on the internal
representation of characters and numbers on the object machine. If there is any choice in
the representation of characters then the following points should be borne in mind:

a. It should be easy to tell whether a character is a letter and whether it is a digit.
b. It should be easy to convert from the character representation of a digit to its repre-
sentation as a number.

On machines where numbers are represented as a string of characters rather than in binary,
consideration b) above will not apply and the routines for converting between character and
numerical representations will be very short or even null.

Descriptions of the pieces of machine-dependent code follow.

7.1.1 The MDTEST Subroutine

Description
Subroutine with both parameter and exit label (however, see Note below).
Parameter is a pointer.

Action
If the character pointed at by the parameter is not a letter or a digit then go
to the exit label. Otherwise return.

Note
It is highly desirable that MDTEST be replaced by in-line code in the MI-logic
rather than act as a subroutine. To generate in-line code a macro should be
defined with structure representation:

CALL WITHS MDTEST WITHS ( ) WITHS PT WITHS EXIT NL
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7.1.2 The MDFIND Subroutine

Description

Subroutine with no parameter or exit label. MDFIND is the hashing function.
The atom to be hashed is described by IDPT (which points to its first char-
acter), SPT (which points at its last character) and IDLEN (the number of
characters in the atom).

Action
Map the atom into a number as described in Section 6.2.3 [Hash-Tables and

their Definition], page 43 and set OFFSET as the value of this number. Hence
OFFSET should be a multiple of LPT and should satisfy the relation:

0 <= OFFSET < LHV
Also set HTABPT equal to HASHPT + OFFSET.

7.1.3 The MDCONV Subroutine

Description
Subroutine with no parameter or exit label. MDCONV converts a number to a
character string representation. The number to be converted, which may be
positive, negative or zero, is given by MEVAL.

Clobberable
MEVAL.

Action

Convert the value of MEVAL (as a decimal number) to a character string repre-
sentation (which should be stored in some workspace reserved for use by the
MDCONV subroutine). Set IDPT to point at this character string and set IDLEN
as the number of characters in it. The character string should consist only of
digits except that it should be preceded by a minus sign if MEVAL is negative.
It should contain no redundant leading spaces.

7.1.4 The MDNUM Subroutine

Description

Subroutine with no exit label. MDNUM converts from the character representa-
tion of a number to its internal form. This number is a non-negative decimal
integer. IDPT points at the first character of the string to be converted and
SPT points at the last character (SPT >= IDPT).

Clobberable
MEVAL (but not IDPT).

Action
If the character at IDPT is not a digit then go to the exit label. Otherwise,
if any character between IDPT and SPT (inclusive) is not a digit then go to
ERLIA; if all are digits then set MEVAL to the value of the decimal number
represented by the string of digits and return.
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7.1.5 The MDGOBC Label

Description
Label. MDGOBC is used when the BC delimiter occurs on a call of MCGO. Before
MDGOBC is gone to the following work is done:

1. arg B of the call of MCGO is evaluated, INFFPT is set to point at the first
character of its value and ERIAPT is set to point at the character position
beyond the last character.

2. arg C of the call of MCGO is evaluated and it is verified that its value
consists of a single character. IDPT is set to point at this character.

Clobberable
IDPT, IDLEN.
Action
Go to one of the following three labels, depending on the form of arg B and
arg C:
1) ERLIA arg C is illegal.
2) GOSUC arg B belongs to the class designated by
arg C.
3) GOFAIL arg B does not belong to the class desig-
nated by arg C.
Action

a. In current implementations arg C can be L (for letter), N (for number)
or I (for identifier) but this list can be extended if desired.

b. MDGOBC requires careful coding, due to various special cases. In particular
arg B may be null, in which case the condition should fail. Furthermore
such strings as ‘+ 1’ and ‘+ - 1’ should be accepted as numbers but such
strings as ‘+’, ‘+=", ‘+ 1 -7 and ‘4 1 - 2’ should not.

7.2 Subroutines for Error Messages

The two machine dependent subroutines MDERPR and MDQUOT are used in the production
of error messages from ML/I. These two subroutines and the PRTEXT statement (see Sec-
tion 4.4.3 [The PRTEXT Statement], page 30) are the only parts of the logic concerned with
the production of error messages.

7.2.1 The MDERPR Subroutine

Description

Subroutine with no parameter or exit label. MDERPR is the main printing
routine. The piece of text to be printed is pointed at by IDPT. IDLEN gives
the number of characters in the text.

Clobberable

IDPT.
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Action

Print the text on the error message listing. Note that the text may be null
(in which case IDLEN is zero). Startline characters should be replaced by the
characters (SL) to make their presence obvious to a reader.

7.2.2 The MDQUOT Subroutine

Description
Subroutine with no parameter or exit label.
Action

Print a quote on the error message listing (MDQUOT has been made a machine-
dependent routine for pragmatic reasons in that the printing of a quote is so
often a special case).

7.3 Initialisation and Finalisation

It is necessary to code by hand some logic to provide an environment in which ML/I is
to operate. This code performs the necessary initialisation before the MI-logic of ML/T is
entered and clears up when it has finished.

7.3.1 Initialisation Code

It is necessary to write a certain amount of code for initialisation which is to be executed
immediately after ML/I is loaded and immediately before the MI-logic is entered.

One of the functions of this code is to process control statements supplied by the user.
Typical functions of such statements would be:

a. To describe the form of the input and output.
b. To specify the size of the workspace.

c. To specify whether a print-out of all construction names is required (see Section 7.3.3
[The MDHALT Label], page 51).

The format and the physical form of these control statements will vary considerably between
implementations.

A second function of the initialisation code is to set up variables to describe the stacks
and the initial state of the environment. Normally the initial environment will consist only
of the operation macros but it is possible for the initialisation routine to bring in pre-defined
local or global substitution macros and other constructions. For instance a certain control
statement might be made to cause a particular package of definitions to be included. If new
definitions are included they must be added to the relevant hash chains. Global definitions
should be stored at the start of the forwards stack and local definitions at the start of the
backwards stack.

The initial state of the stacks and the pointers that describe them is illustrated by the
following diagram:
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Start of workspace ---> +4-—----------—-———————o +

| pre-defined global |
| definitions (if any) |

PVARPT --=> #=—====—=m—mm—mmmmoe o +

| free space |
| |
\N/\/N/N/NINININININ/NIN/
\N/\/N/N/N/NININININ/NIN/

| free space [

LFPT —==> 4====—===mmmmmm e +

| pre-defined local |
| definitions (if any) |

ENDPT ---> #-—-———————————————o +

The variables that describe the initial state of the environment and the stacks are declared
as a block in the MI-logic. This block is called DIB, meaning “Dynamic Initialisation Block”.
Variables in DIB should be initialised as follows:

a.

b.

d.
e.

PVNUM

GLBWSW

PVARPT

ENDPT
LFPT

The number of permanent variables that is allocated at the start

of processing.
Set to value 6 if the predefined global definitions include a warning

marker and to value 7 otherwise (the switch within HASHTB should
be initialised in a similar way if there is a local warning marker, see
the HETABLES statement of Section 6.2.3.1 [The HETABLES State-

ment|, page 43).
The address given by:

address of start of workspace +

size of predefined global definitions + PVNUM * OF (LNM)
Pointer to the address beyond the end of workspace.

The address given by:
ENDPT - size of predefined local definitions

Lastly the initialisation code should preset the I/O, initialise the S-variables if this is to
be done dynamically, perform any further initialisation peculiar to the implementation and
then branch to the label BEGIN in the MI-logic in order to start ML/I executing (if the
INVALS SECTION has been deleted from the Ml-logic then a branch should be made to
the label MBEGIN rather than the label BEGIN. If, as occurred on one L-map, the mapping
of the VARS SECTION yields some executable initialisation code, then the flow of control
should be adjusted to include this code).

7.3.2 The MDINIT Subroutine

Description

Subroutine with no parameter or exit label. MDINIT is called when all initial-
isation in both the MD-logic and the MI-logic has been performed and ML/I
is hence ready to start processing.
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Action

In most implementations MDINIT will be null. However one example of its
use is illustrated by the PDP-7 implementation which, when MDINIT is called,
communicates with the user and allows him to type in source text from the
keyboard.

7.3.3 The MDHALT Label

Description
Label. The MI-logic transfers control to MDHALT at the end of processing.
Action

Print message to user that macro-processing is complete, perhaps with extra
information as to how many macro calls have been performed (as given by
the variable INVOCT) and how many source lines have been scanned.

In addition an implementation may print out the list of all names in the
environment at this stage (this print-out may be made dependent on an option
set by the user). If a print-out is desired this can be achieved by calling the
subroutine PRENV, which lies in the MI-logic of ML/I. If, on the other hand, it
is desired to omit this facility altogether from an implementation then SECTION
ENVPR of the MlI-logic, which contains the statements that implement it, can
be deleted.

When MDHALT has finished its printing it should terminate all the I/O and, as
appropriate, either halt, return control to the supervisor or continue with the
next job step.

7.3.4 The MDABRT Label

Description

Label. The MI-logic branches to MDABRT if a process is aborted due to stack
overflow or a system error. The branch occurs after the relevant error message
has been printed.

Action

MDABRT will be coincident with MDHALT on most implementations. The only
difference is that if macro processing has been aborted it may be considered
desirable to stop the entire job rather than pass control to the next job step.

7.4 The MDOP Subroutine

Description

Subroutine with no parameter or exit label. MDOP is called from the GETEXP
subroutine and deals with the multiplication and division operators in the
calculation of macro expressions.



Implementing software using the L language — Second Edition

Action

Assuming the * and / operators were allowed in expressions in L, MDOP would
be:
SUBROUTINE MDOP
IF OPSW = 1 THEN
//MULTIPLY CASE//
SET MEVAL = OP1 * MEVAL
// If desired, a test for overflow can be performed
and the action ‘GO TO ERLOVF’ performed if it is
detected. //
RETURN FROM MDOP
END
//DIVIDE CASE//
IF MEVAL = 0 THEN GO TO ERLOVF
SET MEVAL = 0P1/MEVAL
// An overflow test can be performed, if desired. //
RETURN FROM MDOP
ENDSUB
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8 Notes on the Overall Organisation of an L-map

Experience so far has shown that it is highly desirable to split an L-map up into several
passes, although this is not usually logically necessary. Furthermore it has been found that
since the data SECTIONSs are relatively short and involve relatively complicated compli-
cated macros, it is quicker, at least in the short run, to encode them by hand unless the
implementor is very practised in using ML/I.

An implementor mapping to an assembly language may find that it is convenient to
organise his L-map into three passes in approximately the following way:

a. Pass 1. Deal with comments and layout statements, the OF macro, and constants
represented by identifiers. Possibly deal with the AD, BLOCK and quote macros, though
it may sometimes be more convenient to build these into the Pass 3 macros. Delete tabs
from the source text. Perform preprocessing of IF statements and any other statements
presenting difficulties in later passes.

b. Pass 2. Map all statements into pseudo-instructions. Pseudo-instructions will be like
instructions for the object machine except that the operands will be more general.
Typically there might be a pseudo-instruction to evaluate an expression and place its
value in a register, which, say, had the form:

LOADEX register, arithmetic expression
In addition to LOADEX there might be a pseudo-instruction of form:
INST op code register, VCI-CHNMPTSW

which dealt with indirect addresses as operands and turned constants into literals. If a
machine has, like IBM System/360, several instruction formats there may need to be
several different INST pseudo-instructions.

¢. Pass 3. Deal with labels and turn pseudo-instructions into pure machine instructions.

In addition there might be a fourth pass to perform optimisation.

There are two small precautions, both concerned with bracketing, that need to be taken
on a multi-pass L-map. Firstly if IND is processed on Pass 3 and CALL on Pass 2 then in
the statement

CALL SUB ( IND ( IDPT ) NM ) NM

the first right parenthesis will be taken as the delimiter of CALL on Pass 2. To cause correct
matching of parentheses the skip:

MCSKIP MDT, IND WITHS ( )

is necessary. Similar action may be necessary for other uses of parentheses, for example the
AD and BLOCK macros and parentheses introduced as the result of mapping macros.

Secondly if labels are processed before LID and PRTEXT, the skips

MCSKIP DT, <PRTEXT WITHS[ 1>
MCSKIP DT, <LID WITHS [ 1>

will be necessary to avoid the brackets within those macros being taken to mean the placing
of a label.
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8.1 Scope of Mapping Macros

When performing an L-map it will be found that many mapping macros only occur in
restricted contexts. For instance the mapping macros for declarative statements are only
required in the VARS SECTION and there are instances of macros that can only occur within
some other macro. However names have been chosen so that macro names are unique so it
is possible to apply all mapping macros to the entire MI-logic. This is usually easier and
quicker than defining macros with limited scope. The only element of care necessary is to
avoid macro replacement within comments and character string constants by defining them
as skips or straight-scan macros.

8.2 Debugging of Mapping Macros

The debugging of mapping macros should be performed using specially written test state-
ments rather than the logic of ML/I itself. There is a skeleton version of the logic of ML/I
which is also useful for testing. This skeleton version does little more than read in an atom
and output it again but it is a good idea to map it into the object language as a preliminary
to mapping the full MI-logic. When this skeleton version is working on the object machine
it can be used to test the I/O and other hand-coded material.
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Appendix A Statement Prefixes

Currently the list of statement prefixes, as described in Section 2.5 [Comments], page 7, in
the logic of ML/I is as follows:
a. The prefix /- OVP -/ is used to precede SET statements where arithmetic overflow is
possible. See Section 3.1 [Data types], page 9.
b. The prefix /- IN -/ is used to precede all SET and SETSW statements in the INVALS
SECTION. See Section 5.1 [Static and Dynamic Initialisation], page 37.

c. The prefix /- CSS -/ is used to precede any label that is gone to from within a sub-
routine. See Section 4.1.1.1 [The SUBROUTINE statement], page 17.
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