SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 2, 107-136 (1972)

Abstract Machine Modelling to Produce Portable
Software—A Review and Evaluation

M. C. NEWEY
University of Stanford, Stanford, U.S.A.

P. C. POOLE
Culham Laboratory, United Kingdom Atomic Energy Authority, Abingdon, England

AND
W. M. WAITE
University of Colorado, Boulder, U.S.4.

SUMMARY

This paper discusses the use of abstract machine modelling as a technique for producing
portable software, i.e. software which can be moved readily from one computer to another.
An overview of the principles involved is presented and a critical examination made of
three existing abstract machines which were used respectively to implement a macro
processor, a text editor and a BASIC compiler.

KEY WORDS Abstract machines Portability Adaptability Macro processor STAGE2

INTRODUCTION

The purpose of this paper is to summarize our experience with abstract machine modelling
as a technique for producing portable software. We shall present an overview of the prin-
ciples involved, and then discuss three concrete examples. Our emphasis throughout will
be on the design decisions: why they were made in a certain way, what performance
resulted from them and how they should be altered to improve that performance.
Abstract machine modelling is based on the concept that the fundamental operations
and data types required to solve a particular problem define a special purpose computer
which is ideally suited to that problem. The algorithm for producing the solution can then
be encoded as a program for this ‘abstract machine model’. In order to obtain 2 running
version, the abstract machine model is realized on an existing computer by implementing
its basic operations and data types.l-?
The key to the whole technique is the design of suitable abstract machines. Three points
must be taken into consideration:
(1) The convenience of the abstract machine language and its suitability for expressing
the particular algorithm for which the machine is designed.
(2) The relationship between the abstract machine language and the structure of
available computers.
(3) The limitations imposed by the tools used to convert the abstract machine language
to a language for the real machine.
Received 24 September 1971
Revised 10 Sanuary 1972

© 1972 by John Wiley & Sons, Ltd.
107

108 ' M. C. NEWEY, P, C. POOLE AND W. M. WAITE

In this paper we shall make a critical examination of three existing abstract machine
designs in the light of these points. Before discussing any of the machines in detail, we
shall present general implementation techniques for abstract machine models. Each of
these techniques will be applied to the specific designs of subsequent sections,

IMPLEMENTATION TECHNIQUES

We favour a macro processor as the tool for realizing an abstract machine model on a real
computer. The merits of this approach have been presented?—* and we shall not argue them
at length here. In our view, the most significant advantage of a macro processor is the ease
with which changes can be made to the definitions relating the abstract machine to the real
one, and consequently the degree of control which can be maintained over the generated
code. We believe that this advantage outweighs the space and time penalties of the macro
generation itself.

The problem to which we address ourselves is a special one: that of transferring working
software to a new computer. We can assume that the source program is syntactically correct
and therefore no extensive translation time diagnostics are required. Source statements can
be in a fixed format if this will significantly aid the macro processor. The text can be

.organized to guarantee that declarations precede program text and that all attributes of a
variable are defined before that variable is used. Thus rione of the traditional arguments of
compiler versus macro processor apply to the case in which we are interested.

There are two basic approaches to the transfer of software. The most commonly described,
known as a kelf bootstrap, is to use tools currently available on one machine to implement
the software on another. Our experience has been that in many cases this approach involves
insurmountable communication problems. Peripheral incompatibility, differing character
sets and distance between the machines, all conspire to put the implementation beyond the
patience of mortal man. The second approach is called a full bootstrap. All work is done on
the target computer, beginning from symbolic source text.1-2 A full bootstrap cannot be
carried out if the resources of the target computer are not sufficient to run the macro
‘processor with the necessary definitions.

We believe that all portable software should be designed for implementation by the full

bootstrap process. Such a design in no way precludes the possibility of employing a half
bootstrap. If, on the other hand, the system is desngned for a half bootstrap, then a full
bootstrap is usually impossible.
- We aim to produce software which is not only portable but which is also economically
viable, This means that we must consider the problems of optimization as well as simple
code generation. In general, different criteria of optimality will be used for different
programs. A module which is heavily used should be fast, while infrequently activated code
should occupy as little space as possible. By changing the macro definitions, one can tailor
the generated code to specific criteria without altering the source program. Later in this
paper we shall present a detailed discussion of such tailoring which was carried out on the
TEXED machine.

When an abstract machine is designed for a specific problem, the basic operations

-suitable to that problem become the instruction set of the abstract machine. Most problems
will suggest a number of specialized operations which could possibly be implemented quite
efficiently on certain hardware. The designer must balance the convenience and utility of
these operations against the increased difficulty of implementing an abstract machine with
a rich and varied instruction set. One way of balancing the requirements for portability and

PORTABLE SOFTWARE 109

for a close modelling of the problem is to employ a Aierarchy of abstract machines.® Instead
of realizing the initial abstract machine (A;) directly on a real computer, design a second
abstract machine (Ay). The operations of A, are then defined in terms of A; operations.
Such a definition is independent of the realization of A, itself and hence A; may be realized
by realizing A,. The hierarchy can be carried to any depth by defining A; in terms of Ag,
A; in terms of A,, and so on. The base machine of the hierarchy A; is then realized on a
real computer.

The purpose of a hierarchical realization is to ease the initial implementation of the
abstract machine on a new computer by providing a simple base machine. With additional
effort, optimizations of either speed or space can be carried out by skipping some steps of
the hierarchy. For example, suppose that A, provides a string move instruction. A, might
implement this operation in terms of full word fetch and store operations, plus shift and
mask instructions to handle end conditions. On System/360, A, could be by-passed and the
string move implemented directly. Thus it is possible to take advantage of specialized
hardware instructions without altering the algorithm. This would 7ot be possible if A; did
not provide the string move operation.

Note that there may be other instructions of A; whose translation to A, is not by-passed
There is no compulsion to by-pass a level completely if this does not seem appropriate
Only those instructions which measurement shows to be critical need be considered. We
shall discuss hierarchies in more detail later in this paper, in connection with the machine
AIML.

The macros which define an abstract machine are equivalent to the hardware of a real
computer. Just as a manufacturer must test for faulty components and wiring errors, the
implementor of an abstract machine must test for macro coding errors. To aid the imple-
mentor in this task, the designer must provide a series of test programs. These ‘engineering
tests’ are indispensable. They must be designed to verify every macro, pinpointing errors
as carefully as possible. Applications software for the abstract machine cannot provide the
discrimination required to detect macro coding errors effectively.

Our test programs are similar to conventional hardware tests.® We have no ‘customer
engineer’s panel’, so we must rely on the normal I/O mechanisms to report any failures.
The first test therefore simply reads and prints one line. Each subsequent test reads a line
describing a failure and then checks to see whether that failure occurred. If so, the hne is
printed. Otherwise the next test is begun.

The designer must select a minimal set of operations, test these and then use them in
the testing of other operations. Selection of the test sequence and overall strategy depends
upon the organization of the abstract machine.

FLUB

Design rationale

FLUB (First Language Under Bootstrap) is an abstract machine designed specifically for
the task of constructing STAGEZ2,” the macro processor which we use to realize all other
abstract machine models. STAGE?2 deals with three types of data: strings, trees and integers.
Thus the basic organization and operations of the FLUB machine must be suited to mani-
pulating these data types.

The representation chosen for a tree was a slight modification of that presented by de la
Briandais® and Nishimura.? This representation determined the composition of the FLUB
word. Figure 1 shows a tree containing the strings CAT, COT and DOT set up in a

110 M. C. NEWEY, P. C. POOLE AND W. M. WAITE
sequentially addressed store. Notice that each word is divided into three fields. The FLG

(flag) field contains indicator bits, the VAL (value) stores one character and the PTR
(pointer) is used as an address.

Address | FLG | VAL | PTR |

1]
100 0 c 107 {Root of the tree)
101 0 A 104
102 a T 0
103 1 (End of CAT)
104 0 o] 0 {Continuation of COT)
105 0 T 0
106 1 (End of COT)
107 o | o|o (Beginning of DOT)
108 0 o 0
. 109 0 T 1]
110 1 {End of DOT)
o

1 ! ! l
Figure 1. Representation of a tree

- Given the structure of the FLUB word, a string is easily represented as a linked list of
words. The VAL field of each word contains a character of the string, and the PTR field
addresses the word containing the next character. Any substring of such a string may be
specified by a word whose PTR field addresses the first character of the substring and whose
VAL field contains the length of the substring. The VAL field must thus be long enough
to hold either the largest character or the length of the longest substring.

There are several ways to represent an integer in a FLUB word: use the full word,
use a"combination of fields or use a single field. At the moment there is no clear reason for
choosing one of these representations over the others. Let us therefore defer the question
temporarily and consider the operations required on each field.

The FLG field is used as an indicator, and thus operations which test and set this field
are important. Because the VAL field is used to hold a string length, addition and sub-
traction of VAL fields must be possible. A test for equality of two VAL fields is required
to permit character matching. Addition and subtraction must be possible on the PTR field
to provide for sequencing through a tree. Because the PTR field is long enough to contain
an address, it can hold the return address for a subroutine call.

Considering the operations, it seems reasonable to use the PTR field to represent an
integer. This field is already the largest, and addition and subtraction operations are defined
for it. Thus only multiplication, division and a test for relative magnitude must be added.

PORTABLE SOFTWARE 11

The length of the pointer field determines the range of integers allowed-in a-particular
implementation.

Some form of input/output operations are required. Since a string is represented by a
linked list of characters, character-by-character I/O operations seem reasonable. Characters
are always stored in VAL fields, so that the operations read one character into a VAL field
and write one character from a VAL field. The only characters which have some intrinsic
significance are the decimal digits. In order to implement arithmetic expression evaluation,
it must be possible to convert strings of digits into integers and vice versa. This can be
done if the digits are represented by successive integers. By subtracting the representation
of the character 0 from the representatxon of any digit, we obtain the integer value of the
digit.

STAGE2 processes lmes of input text to produce lines of output text. It must therefore
have a means of detecting the end of a line on input and forcing one on output. This can
be done by defining a special character, the carriage return, which does not occur in the
normal character set. We therefore represent the carriage réturn character by —1 and
restrict the representation of normal characters to non-negative integers. _

The character operations discussed above were the only form of I/O provided in the
initial design of FLUB. They are sufficient if STAGE2 uses a fixed set of I/O devices.
After two years’ experience with STAGE2, we realized that a more flexible I/O interface
was necessary. The currently distributed version of STAGE2 permits the user, by suitable
coding of his macros, to obtain input from or direct output to any one of nine I/O devices.
The requirements which this feature placed on the FLUB machine should be examined
in the light of the second criterion for abstract machine design: the relationship between
the abstract machine language and the structure of available computers.-

I/O hardware and/or operating systems of most computers transmit records to and from
peripheral devices. This means that buffer packing and unpacking routines must be written
to support character I/O on most computers. If characters are to be directed to a number
of devices a number of buffers are necessary. Each character I/O operation must specify the
device and this specification must be interpreted by the buffering routines each time a
character is transmitted. Since STAGE2 'does process lines of text and it is not pessible
to switch the I/O device during transmission of a line, this overhead can be avoided by
defining record I/O operations as well as character transmission. The character I/O opera-.
tions move information- into and out of a line buffer; the record I/O operations transmit.
data between the line buffer and the peripheral devices.

Eachrecord I/O operatlon must specify the peripheral device with which it communicates.
Since STAGE? only permits the use of nine peripherals, the VAL field of a2 FLUB word
can be used to specify a peripheral number. The FLG field of the same word is set by the
operation to reflect what happened (normal completion, end-of-file detected, illegal
operation, permanent error).

In order to introduce record transmission and the line buffer, we must alter the ¢haracter
output operation. The problem is output of long lines. When a character output operation
is transmitting information directly to a device, the user need not be concerned with the
length of the line being written. If the peripheral device has a fixed record length, then its
buffering program simply writes a record whenever enough information is available. When.
the line buffer is used, however, record I/O operations must be issued by.the program
whenever the line buffer fills. We did not wish to fix the length of the line buffer, so we
made the character output operation set the FLG field of the word from which it extracts
the character. If the character can be placed into the line buffer then the FLG field is set

PORTABLE SOFTWARE 113

macro processor called SIMCMP.2* SIMCMP is only capable of handling simple sub-
stitution macros whose parameters are single characters. Unlike STAGE?2, it has no internal
memory or conditional expansion facilities and can only make one pass over the input text.

Because of the limitations of SIMCMP we restrict the operands of FLUB statements
to single characters or fixed-length strings of characters. Two types of operand are required:
register names and program labels. We have therefore given the FLUB machine thirty-six
registers and named them A-Z and 0-9. All program labels consist of two digits. Constants
cannot be used as operands in FLUB. Instead, the registers named 0-9 are initialized by
an external process to the values shown in Table I. Thus the instruction

PTRA=A+1
increments the PTR field of register A by 1.

Table I. Initialization of digit registers

Initial value of
Register FLG VAL PTR
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4
5 5 10
6 6
7 7 Address units per FLUB word
8 8 First FLUB word address
9 9 Last FLUB word address

The lack of constant operands makes the production of error messages difficult. We have
had to define special operations to write these messages. They behave like record output
operations, but transmit the message rather than the contents of the line buffer. As with
record output, the VAL field of a register specifies the device and the FLG field of the
same register is set to reflect the completion condition.

A complete list of FLUB statements is given in Figure 2. A single apostrophe represents
a register name and may be replaced by any letter or digit. Two successive apostrophes
represent a program label and may be replaced by any two digits. The four apostrophes in
the message output operation represent the message name. They may be replaced by
CONYV, EXPR, FULL or IOCH.

Implementation

It is difficult to discuss the implementation of an abstract machine without considering
some real computer as well. We shall therefore use a System/360 implementation to
provide a concrete frame of reference. Modifications for other hardware will be pointed
out as necessary.

The first question which must be answered is how much storage to allocate for each
field of the FLUB word. Table II summarizes the information which each field must
contain. Most of the quantities in Table II are determined by the choice of a target com-
puter (this is not strictly true as will become apparent below). The maximum string length

114 M. C. NEWEY, P. C. POOLE AND W. M. WAITE

Data transfer operations
Register—Register FLG'='
VAL'=pTR'
PTR'=vAL'
Register—Memory GET'=’
: ' sT0'=’
Integer arithmetic operations
VAL field VAL ="+
V AL 14 = [— 14
PTR field PTR'="+"'
PTR ’ = r - r
PTR'="*'
PTR'="/'
Controf operations
Unconditional) sSToP
TO0'’
TO0''BY’
RETURN BY'
Conditional
FLG field TO'' IFFLG'='
TO'’IFFLG'NE'
VAL field TO' IFVAL'="
TO''IFVAL'NE’
PTR field T0'' IFPTR' =’
TO''IFPTR'NE’
T0''IFPTR'GE'
1/0 operations
Character transfers VAL'=CHAR
‘ CHAR=VAL'
Record transfers READ NEXT’
WRITE NEXT'
REWIND *
MESSAGE'’’' 10’
Pseudo operations
Program label definition Loc’’
End of text END PROGRAM
Figure 2. FLUB statements

and the range of integer expressions constructed by the STAGE2 user, however, depend
upon the applications envisaged. Specifying the field sizes will place limits upon these
quantities and it is important that the implementation does not collapse when the pro-
grammer inadvertently exceeds these limits.

The internal representation of a character can be chosen freely by the implementor,
subject to the constraint that the characters 0-9 are represented by successive integers.

PORTABLE SOFTWARE 115

It is generally simplest to use the normal internal representation provided by the target
computer. On System/360, this choice means that each character is represented by a
non-negative integer less than 256. (The digits 09 are represented by the integers 240 to 249
and hence the constraint is satisfied.) Eight bits are required to hold a single character,
so that the VAL field must be at least this long.

Table II. Information stored in a FLUB word

Field Contents
FLG Integers 0,1, 2 or 3
VAL Non-negative integer representing a character
Non-negative integer representing the length
of a string
—1
PTR Address in the FLUB data memory
Address in the FLUB program
Value of an integer expression constructed by
the user of STAGE?2

The VAL field must also be capable of holding the integer— 1. This is the only negative
number which is ever stored in the VAL field. We can therefore guarantee that the contents
of the VAL field is always positive if we bias it by adding 1. If the topmost character
(represented by 255) never occurs, then biasing does not require another bit.

If we were to settle on an eight bit VAL field, using bias by 1 to ensure that the contents
is non-negative, then the maximum allowable string length would be 254. Depending upon
the intended application of STAGE2 this might be quite adequate. If we envisage the
need for longer strings the number of bits assigned to the VAL field could be increased.

The PTR field must be able to hold an address and on System/360 this could be taken
to imply a length of twenty-four bits. However, by using base registers and constraints on
memory addresses this length can be reduced. Here is a case where the choice of a target
computer does not fix the size of an address. A choice is still open to the programmer.
He may trade a saving in space for additional complexity in the generated code. Let us
examine how this trade could be made.

Together the FLG and VAL fields require ten bits. If four bytes were allocated to a
FLUB word this would leave twenty-two bits for the PTR field. By suitable choice of
origin every FLUB word could be guaranteed to have an address whose last two bits were 0.
Thus the last two bits of the address carry no information and may be dropped, bringing
the length of an address down to twenty-two bits. The only operations which actually use
the PTR field to access memory are GET and STO (Figure 2), and hence they are the only
two which must adjust its value.

Program addresses may also be stored in PTR fields. They are manipulated by the
operations TO ” BY ’ and RETURN BY ’ and represent return addresses for subroutines.
By inserting the pseudo operation CNOP into the definition of TO ” BY ’, it is possible to
force the return point to a full word boundary. The return address will therefore always
end in two zero bits. This wastes a maximum of two bytes per subroutine call, and therefore
does not represent a serious space penalty. T'O ” BY ’ would shift the address right by
two bit positions before placing it in the PTR and RETURN BY ’ would shift it left after
extracting it.

The value of an integer expression constructed by the user of STAGEZ might be either
positive or negative. This means that one bit of the PTR field must be reserved for a sign,

116 M. C. NEWEY, P, C. POOLE AND W. M. WAITE

. which implies that either the size of the field should be increased or the range of addresses
restricted. Increasing the size of the field would require either an increase in the word
length or a decrease in the size of VAL. Neither alternative is attractive although either
is possible. If we restricted the length of an address to twenty-one bits only half of the
possible address space of System/360 could be made available. In practice, however, this
will not prove a serious limitation. Let us therefore assume the following field lengths:

FLG: two bits
VAL: eight bits (maximum string length = 254)
PTR: twenty-two bits (— 222 < value of user constructed expression < 222)

It is important to realize that there is nothing sacred about these lengths. They represent
a reasonable compromise in a System/360 implementation which is expected to handle
short strings and relatively large values of user constructed expressions.

Most FLUB instructions operate on one field of a register independently of the other
fields of the same register. Effectively, each register is treated as three separate entities.
It is therefore convenient to consider a field rather than a register as the basic unit of
information for most instructions. If this is done, the number of instructions which must
be implemented is decreased. For example, it is no longer necessary to consider the addition
of two VAL fields and the addition of two PTR fields as separate instructions. Both are
simply instances of an instruction which adds the contents of one field to that of another
field and leaves the result in a third field.

In order to reduce the number of instructions in this way, all fields must be represented
identically. The amount: of space wasted by this representation is small and non-existent
on some computers. We have already pointed out that the fields of a register should be
held in unpacked form to avoid overheads. This implies that each field must occupy at
least one storage location. Only if each location has insufficient storage for a PTR field
does the uniform representation waste space.

Space will certainly be wasted by a uniform representation on System/360. Each FLG
field could be stored in a single byte, since byte move and compare operations are available.
Addition and subtraction must be performed on the VAL field so that it is more con-
veniently represented as a half word. Only the PTR field actually requires a full word.
This mixed representation of the registers fills a storage area of 152 bytes, while a uniform
representation uses 432 bytes. Neither figure represents an excessive amount of storage so
that the decision would probably be made on other grounds: half word operations take
somewhat longer to execute than their full word equivalents but byte move and compare
instructions are slightly faster than the sequence of full word operations required to achieve
the same effect.

Another possible organization is to use bytes, half words and full words respectively for
the fields of a register, but to place all fields of a single register into the same double word.
This would waste one byte per register but it would allow the same representation of data
in registers and memory. (Each memory word would be twice as long as in the previous
example.) Such an implementation would increase the speed of STAGE2 by eliminating
the packing and unpacking associated with GET and STO, at the cost of halving the
available memory space.

Because the fields of a FL'UB word are generally represented differently in registers than
in memory, it is possible to compute values which cannot be stored. For example, full
word arithmetic operations on the PTR field can create numbers larger than 222, Such
numbers could not, however, be stored in the FLUB memory. The value resulting from

PORTABLE SOFTWARE 117

a STO-GET sequence would depend upon the exact implementation of these operations.
Thus it may be possible for the user of STAGE2 to actually evaluate an arithmetic expression
correctly, even though its value exceeds the capacity of the PTR field of a memory word.
This is because arithmetic expressions are evaluated using a stack whose top two words
are held in registers. For certain expressions, only these top two elements of the stack
will be required and hence partial results will never be stored. (The final result of the
expression is either tested or converted to a character string—it is not stored as an integer
in a FLUB word.)

Two 1/O packages have been used for FLUB record 1/O operations. The first,”* and
most widely distributed, was originally developed for the TEXED machine. It will be
discussed at some length later in the paper. This package was unsatisfactory for a number
of reasons, and was replaced in mid-1970.1%1% A complete description of the replacement
(which is used for AIM1 as well as FLUB) is beyond the scope of this paper. Basically,
each record I/O operation becomes a subroutine call which could be written in FORTRAN
as follows:

JFLG = IOOP(JOP, JVAL, LB, 1, LIM)
JFLG = flag field of register
JVAL = value field of register
JOP = —1 for read
0 for rewind
1 for write
LB = base address of the line buffer
LIM = is set by a read operation to index the first free space in the line buffer,
and contains the first free space in the line buffer before a write operation

The character 1/O operations are simple fetches and stores. There are two variables
which index the line buffer, one for reading (LBR) and one for writing (LBW). Each
index is set to 1 by the corresponding record I/O operation. VAL ’ = CHAR moves the
character indexed by LBR into the VAL field of the specified register and increments LBR.
The line buffer is at least one word longer than the longest line which can be read, and
READ NEXT stores —1 in the word indexed by LIM. We rely upon the user to check
for this datum and hence we normally provide no check on the value of the index. Such
a check could easily be provided and was used during the development of STAGE2, Once
the program was checked out, however, the test was removed to improve efficiency.

CHAR = VAL’ is somewhat more complex, and is often not implemented as in-line
code. Figure 3 shows the logic of this operation. MAX is one larger than the length of the
line to be output. Note that no carriage return is actually written into the line buffer; it is
only necessary to set the limit for the write call to the standard interface.

The message operation is also implemented by a call on the standard interface. Each
message may be stored separately and written directly from its storage area by specifying
appropriate arguments to IOOP. Alternatively, the operation could construct the appro-
priate message in the line buffer and write it from there. A third poss1b1hty is to have a
single ‘skeleton’ message and fill it out with the four characters specified in the message
operation before writing it.

Critique

In the previous section we pointed out that a uniform representation of the fields of a
FLUB register was possible. This is the key to the major shortcoming in the design. There

118 M. C. NEWEY, P. C. POOLE AND W. M. WAITE

is no good reason for carrying the word structure required to store a tree over to all other
data types.

. Most strings used in STAGE2 are created and destroyed in a predictable manner and
occupy blocks of contiguous words. Thus, there is no need for explicit linkage. The length
of each string is given and no flags are required to mark the end. When integers are stored
in memory the FLG and VAL fields only rarely contain useful information. We might
therefore save considerable space in the memory by having three data types (tree nodes,
characters and integers) rather than one.

CHAR = VAL’

’
Mov? VAL o SatLIM = LBW
the line buffer ;
Set FLG’ to zero Set FLG ' toons
Y
SetLBW = LBW + 1, Done

. Figure 3. The character output operation

The saving in.space would only be realized, of course, if the target machine structure
took the proper form. On System/360, bytes could be used to store characters and full
words to store tree nodes and integers. The length of a string could be represented by an
integer rather than a VAL field, thus easing the 254 character restriction. Similarly, the
limit on the value of an arithmetic expression could be raised without a storage penalty.

. We would require distinct operations for the abstract machine to transmit the various
data types between registers and memory. Once in the registers, however, all data would
be treated uniformly. Thus only one set of arithmetic and conditional operations would be
necessary. This eliminates eight operations while the memory transfers add four.

If the character data type were stored in a form compatible with the standard I/O
interface, then the two character I/O operations and the line buffer could also be eliminated.
The number of operands for READ NEXT and WRITE NEXT would be increased,
allowing the programmer to specify data transmissions involving any area of memory.

Our measurements on the existing version of STAGE2 show that these changes would
also improve its running speed. Approximately 20 per cent of the total running time is
spent moving characters into and out of the line buffer, a task which could be eliminated.
Another 13 per cent goes to moving character strings from one area of memory to another.
Although this time could not be eliminated, it would be reduced if explicitly linked lists
did not have to be set up.

On the whole, the performance of the current version of STAGE2 is adequate on
medium and large scale computers. Memory size is a serious limitation on small machines

PORTABLE SOFTWARE 119

where higher packing densities could be obtained by using three data types instead of one. _
Expansion times depend upon the complexity of the macros but are generally reasonable
(150 source lines per minute on an ICL 4/70 when translating FORTRAN-like text to
assembly code).

TEXED
Design rationale

The final form of the FLUB machine was strongly influenced by the limitations of
SIMCMP. Once FLUB has been realized on the target computer, STAGE?2 is available
and SIMCMP may be discarded. TEXED was the first abstract machine whose design
was based on the use of STAGE2, rather than SIMCMP, as the tool for realization. It was
used to implement a2 comprehensive text manipulation system called MITEM.

At the time TEXED was designed we had not had sufficient experience with FLUB to
perceive the shortcomings noted in the previous section. We felt that the basic FLUB
architecture would provide a convenient machine for the implementation of 2 program to
manipulate text. MITEM is a context editor which, in its simplest mode of operation,
accepts lines of text from a READ stream, edits them according to instructions taken from
the CONTROL stream and outputs the modified lines to a WRITE stream. Success or
failure of the modification is reported on a PRINT stream (the READ and WRITE
streams would usually be disk files in a multiaccess system; the CONTROL and PRINT
streams would be allocated to a user’s console). For simple copying operations, the transfers
from one file to another are performed outside the memory of the TEXED machine.
However, if the line has to be searched or modified, then it is placed in the TEXED
memory in the form of a list. The VAL field holds a character, the PTR field a link to the
next character and the FLG field a marker to indicate end-of-list. The basic editing
operations such as locate, delete, replace and insert a character string are then programmed
in terms of operations on lists.

The register structure of FLUB was retained but the number of operations was increased
to fill in some of the gaps in the FLUB set (e.g. VAL’ = ’, TO * IF VAL’ GE’, see
Figure 2). Further, since STAGE2 was available to translate TEXED, we were able to
provide ourselves with a more convenient language for programming MITEM. Thus we
removed the restrictions on FLUB operands to single characters imposed by SIMCMP
and permitted the use of strings as identifiers for manifest and character constants. The
former allowed an installation to vary some of the characteristics of the program in a
simple manner; the latter provided a convenient method of describing operations on
characters in a machine independent way, e.g. the instruction

VALA = =Z

stores the integer value of the character Z in the VAL field of register A. The register|
memory transfer operations also differ from those in FLUB since they reflect the fact that
the TEXED memory may be divided into an arbitrary number of arrays by declarations
of the form

DECLARE ARRAY (")

The first parameter is the array name and the second is the number of TEXED words
to be allocated to it. Thus the operation

SET Y = CHANNEL(X)

120 M. C. NEWEY, P. C. POOLE AND W. M. WAITE

stores in register Y, the word in the array CHANNEL addressed by the PTR field of X
and is equivalent to the GET operation of FLUB. The reverse transfer is effected by the
operation

SET CHANNEL(X)=Y

Each operation assumes that the PTR field contains the target computer address relative
to the base address of the array. On the other hand, in the operation

SET’ = (VAL’)
the VAL field is assumed to contain an index which may therefore have to be adjusted
when the instruction is translated. The more conventional indexing operation on an array
is thus permitted.
Thé restriction on labels was also removed in TEXED and identifiers may be used
instead of two-digit integers. Further the pseudo operations

"PROC’ () and ENDPROC

were mtroduced to delimit procedures. The first parameter in PROC is the procedure
identifier and the second is a list of formal parameters specifying register fields. Entry and
exit to procedures are effected by

CALL’(C) and RETURN

statements. The second parameter in the CALL statement is a list of actual parameters
which may be register fields, manifest constants or character constants.

Two additional ‘hardware’ features were added to FLUB in creating TEXED. The
first was a push down stack for temporary storage of registers and for the transmission of
parameters. The second was a number of ‘flip-flops’ which allowed the program to
interrogate its environment and alter its behaviour accordingly. For example, if the program
is running interactively and an error is detected, then it must inform the user and wait for
bim to respond; on the other hand, in batch mode, its only course of action is to terminate
since the execution of further commands may corrupt the file. The instruction

TO ’ IF BATCH
tests the BATCH mode ‘flip-flop’ and transfers control if it is set, Similarly the operation
' TO ’ IF INTERRUPT

allows the user to regain control at the console. This feature is needed since it is possible
to initiate complex searches and repetitive operations which may be time consuming. If the
user realizes that he has made a mistake he can cancel the operation and recover the initial
position.

The most significant dlfference between FLUB and TEXED is the complexity of the
I/O operations required to support MITEM; in the simplest case, MITEM needs one
more device than STAGE2 with input coming from READ and CONTROL streams and
output going to WRITE and PRINT streams. More complex situations require more
complex behaviour. For example, consider the problem of moving a block of text from one
position in a file to another. This involves deleting the text with respect to the WRITE
stream and outputting it to a DELETE stream. Subsequent lines are then input from the
READ stream and output to the WRITE stream until the new position is reached. The
DELETE stream is then rewound and copied onto the WRITE stream. Thus, in addition
to being able to access many I1/O devices, MITEM must be able to perform control opera-
tions such as rewind, endfile and backspace.

