KENT ON-LINE SYSTEM

Document: KUSE/UNRAVEL/1

UNRAVEL User's manual for the ICL 4130

P.J. Brown
University of Kent at Canterbury
December 1971.

KNL7 0/1
Table of contents

Chapter 1 Introduction

1. 1 Uses of UNRAVEL

1. 2 Implementations of UNRAVEL
Chapter 2 The UNRAVEL language

2. 1 A sample program

2. 2 Statement format

2.3 Variables

2. 4 Constants

2. 5 Expressions

2. 6 Input and output

2. 7 Statements

2. 8 The null statement

2. 9 The REM statement

2.10 The LET statement

2.11 The GOTO statement

2.12 The GOSUB statement

2.13 The RETURN statement

2.14 The PROG statement

2.15 Introduction to the output statements

2.16 The string statement

2,17 The TAB, NL and QUOTE statements

2.18 The C, D and M statements

2.19 IF clauses

2.20 Sequence of operation
Chapter 3 Error messages

3. 1 Syntax errors

3. 2 Run~-time errors
Chapter 4 Examples

4. 1 Output statements

4, 2 Subroutines

KUSE/UNRAVEL

- 0/2 KUSE/UNRAVEL

RNL7
Chapter UNRAVEL on the ICL 4130
5. 1 Machine-dependent operations
5. 2 Printing formats
5. 3 Operating instructions for KUNRAVEL
5. 4 Operating instructions for NUNRAVEL
5. 5 System variables
5. 6 The PROG command
5. 7 PROG for NICE programs
5. 8 PROG for KOS programs
9

5.

PROG errors

KNL7 1/1 KUSE /UNRAVEL

Chapter 1 Introduction

1.1 Uses of UNRAVEL

UNRAVEL is a programming language for printing out
information from core store. There already exist several dumping

programs that do this, so it is best to start by describing why
UNRAVEL is useful.

There are two main problems with traditional dumping
programs. Firstly information is printed out in a uniform format,
to a uniform base (e.g. octal) and without any interpretation or
annotation. The unfortunate reader of the dump has to go. through
a mass of information to extract what he needs. Often he has to
perform tortuous conversions, e.g. from octal to decimal,
character, or program address.

The second problem with. conventional dumping programs
is that it is often impossible to- extract information that is
indirectly addressed, e.g. given that location 131 points at a
40 word table, print the table, or given the start of a linked
list, print all the items on the list.

The purpose of UNRAVEL is to surmount these problems
by providing the user with a programming language to describe how
a dump is to be made. 3iIn other words UNRAVEL is used to put
"intelligence" into dumps. An UNRAVEL program can be made to
interpret the material to be dumped to save the reader the trouble
of doing so. For example assume a 24-bit word of information in
a table describes the usage of an I/0 device in the following way:

First two bits : state, e.g. free, busy.

Next seven bits priority level.

Next fifteen bits : pointer to name of user.

and assume further the table contains 30 entries, corresponding

to devices O to 29. An UNRAVEL program could be made to interpret

the table accordingly and print out information in a form such as:
DEVICE O BUSY AT PRIORITY LEVEL 6. USER IS CU/RO99
DEVICE 1 FREE

DEVICE 2 ...

4 Many of the current uses of UNRAVEL have entirely
involved searching core storage for certain information and then

KNL7 : L 1/2 . KUSE/UNRAVEL

printing.out the interpretation of that information. For example
in the Kent On-line System (KOS) it is quite easy to find out
which sub-systems, I/0 devices, disc files, etc., each console is
using, and print this information out.

. This leads to a further usage. UNRAVEL programs can be
written to provide dynamic monitoring of core storage locations.
The current contents of a storage location is remembered and the
UNRAVEL program is set into a loop, comparing the current value of
the storage location with the previous one and, if it has changed,
printing it out. This usage is, however, mainly for the systems
programmer as it may be necessary to understand scheduling algor- "
ithms if results are to be interpreted correctly.]

In spite of theserelatively sophisticated applications
of UNRAVEL, it is expected that by far the most popular applica-
tion will be in providing post-mortem dumps. Possibly it will be
at its most useful in finding the kind of out-of-the-way bug that
can arise in established software. An UNRAVEL dump which prints
out all the tables, lists, stacks, buffers, etc. that the software
uses can be invaluable. The listing should be well annotated and
all information should be in a readable form. The UNRAVEL program
may even be made to give its own comments on apparent errors e.dg.

PRIORITY LEVEL OF DEVICE 3 IS ABOVE THE LIMIT

1.2 Implementatidns of UNRAVEL

UNRAVEL is not tied to any particular computer but can a,
be implemented on almost any one.

There are, however, features of UNRAVEL which will vary

. between implementations for different computers and even for

different operating systems on the same machine. Hence this

manual has been organized as follows: the first four Chapters
describe features of UNRAVEL that are common to all implementations,
and the last Chapter, Chapter 5, describes machine-dependent
features. Each implementation will have its own version of

Chanter 5.

Two of the most important machine-dependent features
are the word size, i.e. the number of bits in a word, and the
machine base. The latter is the base to which machine words are
conventionally represented. The machine base is usually octal,
and this will be assumed in examples in this manual, but there
are many other possibilities, e.g. binary, hexadecimal.

KNL7 2/1 KUSE /UNRAVEL

Chanter 2 The UNRAVEL language

Before describing the details of UNRAVEL it is best to
show a complete program. Clearly the reader cannot be expected to
understand all the details of the program at this stage, but the
example does illustrate the general form of the program. ’

2.1° A sample program

The sample program relates to the example quoted in the
previous Chapter conczarning the table of uses of I/O devices. It
is assumed that the table is pointed at by location 41 (relative
to the current base). Some of the important UNRAVEL operations
used in the program are indirect addressing (the colon operator),
shifting (the 4 operator) and masking {(using the & operator) with
constants (octal constants in this example).

LET TABLE = :41
REM LOOP, X GOING FROM O TO 29

LET X = O
10 "DEVICE ":D X; " "
LET STATE = :(TABLE + X)&060000000
IF STATE = O "FREE" ; GOTO 20
IF STATE = 1 “BUSY"
IF STATE = 2 "WAITING"

LET PRIORITY = (:(TABLE + X)&017700000)%*=15

IF PRIORITY > 10 NL 2; "BEWARE: PRIORITY TCO HIGH;NL 2
® AT PRIORITY LEVEL "; D PRIORITY _

REM ASSUME POINTER TO USER POINTS AT NAME PACKED INTO 2

. . WORDS
LET USER = : (TABLE + X)&077777
. ", USER IS " ; C :USER; C :(USER + 1)
20 NL : :

IF ¥ < 29 LET X = X+l; GOTO‘ 10

The Qgtﬁui would consist of thirty lines of a form such as
DEVICE O .FREE |
DEVICE 1 'BUSY AT PRIORITY LEVEL 37 USER IS CU/RO99
DEVICE 2 " |

KNL7 2/2 KUSE/UNRAVEL

2.2 Statement fo:mat

Statements are terminated with a semicolon or by the
end of a line. When a statement is terminated with a semicolon
further statements may follow on the same line. Statements may
cptionally be preceded by a label, which can be any non-negative
integer. The rules for spacing are flexible and natural and
should not constrain the user. In detail the rules are as
follows:

(a) Any number of redundant spaces and/or tabs
may be placed between the constituent parts
of statements. : . -~

(b) In cases where an identifier is immediately
followed by another identifier or by a
constant it is necessary to place at lesast
one space or tab in between (e.g. after LET
in LET A=l). ‘

Note that it is not necessary to place any spaces or
tabs before a statement if it is not labelled, but it is best
to do so as a program is easier to read if statements are indented
to make labels stand out.

2.3 Variables

There is no concept of data type in UNRAVEL.
A variable is simply a word of information. The user can choose,
as the names of his variables, any identifiers that do not start
with the letter 2. Hence the following are acceptable variable -
names: A, A4, A4APT, TABLEPOINTER. There is no restriction on .o
lengths of names, and names do not need to be declared. (Since
they have no data type there is nothing to declare.) Identifiers
beginning with 2 are reserved for the names of system variables.
Each implementation of UNRAVEL will have its own system variables,
though two variables, %GO and ZBASE, are common to all implemen-
tations. The purpose of ZGO is to prevent endless loops. 2ZGO is
initialized to some set value, say 1l0000. T"hen running a program,
UNRAVEL maintains a count of the number of backward jumps (includ-
ing subroutine jumps) it has performed, and if this count ever
exceeds the value of ZGO then a message is given and the run
aborted. (The count is, in fact, set back to zero every time a
statement is encountered that has never previously been executed
since it was compiled. This helps prevent false diagnoses of
endless loops, though such false diagnoses may occur if a program
is re-run without being re-compiled.)

KNL7 . : 2/3 KUSE/UNRAVEL

The purpose of ZBASE is to aid indirect addressing.. All
indirect addresses are taken relative to the current value of
ZBASE,

The remaining system variables serve one of three
purposes:

(a) To point at useful information. System variables
may be set to point at where the current program starts,
where its variables are, etc. These may be useful set -
tings for ZBASE.

(b) To control the system, e.g. I/0 options.

(c) To preserve information, such as the contents
of registers, that is valuable in a dump but might
be destroyed by UNRAVEL. '

The uses and initial settings of the system variables
for each implementation are described in Chapter 5.

There is no syntactic restriction on the use of system
variables, though the user must be careful that he understands
what he is doing if he changes their values.

The system variables are initialized to appropriate
values at the start of each run, and all the remaining variables,
i.e. those defined by the user, are set to zero. Hence the user
does not need to perform his own initialization for those variables
he wishes to start at zero. e

2.4 Constants

. Unsigned integers may be used as constants. If the
integer starts with the digit zero it is eyaluated to the machine
base; otherwise it is taken as decimal. Thus, for example, on an
octal machine 077 would be the same as 63 and on a hexadecimal
machine OA9 (where A means ten) would be the same as 169.

(Two very minor points. In the unlikely case of a
label starting with a zero it is evaluated to the machine base.
on a hexadecimal machine it is advisable to avoid possible
ambiguities by leaving a space when a constant is immediately
followed by an identifier, e.g. IF X = OABC D ¥; .)

KNL7 2/4 KUSE/UNRAVEL

2.5 Expressions

Expressions involving constants, variables and operators
may be constructed in the normal way. Parentheses may be used freely.
The available binary operators, in order of .precedence, are

(1) +. Logical left shift. The result of the
expression E14E2 is the value of El shifted left

E2 binary places (e.g. 543 is 5 x 23 is 40). If

E2 is negative a right shift is performed (e.g.

404-3 is 5). If E2 is larger in magnitude than

the word size then the result will always be zero. -~

(2) comma. The "field" operator, designated by

a comma, extracts a field from a word. Since each
“machine divides words into fields in different ways,
the field operator is machine-dependent and is there-
fore described in Chapter 5. The main purpose of the
field operation is to supply a convenient shorthand
notation for commonly used masks and shifts. '

(3) &. Logical bit by bit "and" operation (e.q.
037 & 071 is 031).

(4) * and /. Multiply and divide.
(5) + and =~. Plus and minus.

If two successive binary operators have equal precedence
the leftmost is done first (e.g. 4 - 3 - 2 is (4 - 3) - 2).

There are, in addition, two unary operators. The first
of these is the colon operator, which performs indirect addressing.
The value of the expression :El1 is the contents of the word whose
address is given by adding the value of E1l to the value of ZBASE.
See Chapter 5 for further details.

The second unary operator is unary minus, which covers
cases such as

LET X = -1

- Any number of unary operators: may be attached to an
operand, for example =--:-::X. In such cases the order of evalu-
ation is the natural right to left one. Thus :X+1 is taken as
(:X)+1. Hence users should be careful to write :(X+1) 4if they
want to address the word at offset one from the pointer X. The

KNL7 2/5 KUSE/UNRAVEL

following examples show further facets of the precedence rules:

(a) X&Y,Z is - X&(Y,2)
(b) A-B-:C 1is (A-B)—-(:C)
(c) A*-B/C is (A* (-B))/C

Chapter 5 contains further information about opexrators,
for example the effects of overflow or division by zero and the
way indirect addresses are taken.,

2.6 Input and output

UNRAVEL requires one input stream and two output streams.
The input stream supplies the source program. The two output
streams are the results stream .and the mess:ans stream. The former
is used for the results printed out when tht program is run and
the latter is used for error messages or other informatory
messages. In practice the two output streams might not be
differentiated; they might, for example, both go to a line-printer.

Chapter 5 gives full details of how the input/output
streams are defined.

2.7 Statements

The following is a list of all the allowable statements.

2.8 The null statement -

Null statements have no effect on program execution.
Their main use is as blank lines to improve program layout. It
is also sometimes useful to place a labelled null statement, e.g.
9299
at the end of a program. In this case a
GOTO 999

would be equivalent to a stop.

KNL7 . 2/6 KUSE/UNRAVEL

2.9 The REM statement

General Form REM characters
Examgle " REM . THIS FINDS THE STATUS TABLE

REM statements are used to place comments in a prooram.
They are treated as null statements. The comment .cannot i.i7oive
a semicolon, as this aets as a terminator.

2.10 The LET statement ~
General Form LET variable = expression
Example U LET X=X+1

The value of the expression is assigned to the variable.

2.11 The GOTO siatement~

General Form IGOTO

’ '\\THEN} label

Examples GOTO 123
 THEN 16

Jump to the given label. Note that GOTO can have no o
spaces in it. THEN is an alternative name.

—

2.12 The GOSUB statement

" General Form GOSUB label
Example GOSUB 100

This is a subroutine call. Subroutine calls in UNRAVEL
work exactly like those in BASIC. In essence a GOSUB statement
works exactly like a GOTO except that a return link is placed on
a stack. ‘ :

KNL7 2/7 KUSE/UNRAVEL

2.13 The RETURN statement

General Form RETURN

This unstacks an item from the stack used by the GOSUB
statement, and goes to the statement designated by this item,
which will be the statement immediately after the last executed
GOSUB statement. If the stack is empty, it is an error.

2.14 The PROG statement

General Form PROG character string
Example PROG RIDDLED

The action of this statement is totally machine-~dependent.
Typically its action is to set certain system v riables to point
at the locations where the named program (RIDLDLED in the above
example) resides. Any spaces and/or tabs immediately after PROG
are not taken as part of the character string but are ignored.
See Chapter 5 for details.

2.15 Introduction to the output statements

The philosophy behind the output statements is that the
format of output is totally under the user's control. The out-
put routines do not, therefore, do such things as automatically
add extra characters such as spaces and tabs round each number
that is printed. The fact that control has been taken away from
the output routines and given to the user means that the user
sometimes has more writing to do than in some programming languages.
He needs, for example, to specify where all the spaces, tabs and
newlines are to occur.

All the printing statements use the results stream. If
a line becomes too long (e.g. because the user has forgotten to
specify any newlines) some implementations will automatically
insert a newline so that the rest of the line is not lost; others
will simply ighore the rest of the line.

2.16 The string statement

General Form “character string”
Examples "THIS IS X"

"SEMICOLONS ARE ALLOWED;"

KNL7 . A 2/8 KUSE/UNRAVEL

This prints the character string within the quotes.
The character string may involve semicolons and these are not
taken as terminators. It cannot however include any quotes. A
null character string is allowed (but is of no obvious use).
Spaces, tabs, etc. within the character string are printed exactly
as they occur. .

2.17 The TAB, NL and QUOTE statements

General Forms TAB
QUOTE
NL
TAB . expression
QUOTE ekpression
NL expressior

Exgggles ‘ f NL
NL - 3
TAB X+6/Y

As can be seen,each of these statements can optionally
have an expression as its argument. If the araument is omitted
ohe tab, quote or newline is printed.. Otherwise the value of the
expression gives the number .of tabs, quotes or newlines to bhe .
printed. If the value is not positive, nothing is printed. Thus

T TAB . o)
is a null statement, and '
T ' B TAB 1
is equivalent to TAB.

The purpose of the QUOTE statement is to make up for the
restriction that quotes are not allowed in string statements.

2.18 The C, D and M’ statements

General Forms | C expression
expression
M expression
Examples C :(PTR+3)
D 'TABPT
M : (PTR+OFFSET) , 3

KNL7 2/9 KUSE/UNRAVEL

The three statements respectively print the value of an
expression in character, decimal and machine format (i.e. to the
machine base). (Since on, say, an octal machine it would be more
natural to use the letter "0" rather than "M" to get an octal
print-out, there is a facility for each implementation to have its
own synonym for M. See Chapter 5 for details.) In none of the
three cases is any extra tabs or spaces printed before or after
the value of the expression. When decimal format is used, re-
dundant leading zeros are suppressed and a sign is printed only
if the value is negative.

. The form of printing for the C and M statements is
largely machine-dependent, but one general point can be made. The
number of characters or digits is normally fixed (e.g.C might
interpret a value as 4 packed characters and M :»ight always print
8 octal digits), but if the last operation that is performed in
the expression is the field operation then th~ printing is usually
truncated. This is called limited-field print:iag, and is best
"illustrated by an example. Assume that the field operation is
defined such that

M X,999

. means print a certain 2-bit field of X. Then it would obviously
be foolish to output 8 octal digits, since only one is needed.
Hence the general rule is that on a limited-field C or M statement,
printing is limited to sufficient characters or digits to cover
the field.

Tf the user wishes to force limited-field printing, he
can, of course, add a field operation to the end of his expression.
If he wishes to inhibit it, he can add some redundant operation
to the end, e.qg.

M X,999+0

Note that limited-field printing only applies when the
field operation is the last executed operation in the expression.
Thus —_—

M 2+X,999

would not cause limited-field printing since the addition operation,
having the lower precedence, is executed after the field operation.

KNL7 . 2/10 KUSE/UNRAVEL

2.19 IF clauses

‘ Any statement can be~preceded by one or more IF clauses
of form ' = :

-y '.

A

>

IF eggressioh I <! expression;f
b 'LE l.

'GE
where the-relational operators have the obvious meanings. If any o~
of the IF clauses attached to a statement does not hold then
control skips to the next. line. ,
" The following example illustrates this .
IF X GE4 IF XLE 7 _ "X IS BETWEEN 4 AND 7"; NL
IF TYPE & 8 = 8 "IS A MAN": IF SALARY > 4000" OF WEALTH";GOTO 100

In the first example the string and the newline that
follows are printed only if X is greater than or equal to four
and less than or equal tc 7. In the second example the GOTO 100
is only executed for men of wealth.

Note that UNRAVEL differs from some programming languages
in that IF clauses do not have a THEN following them. However the
BASIC syntax

IF X>Y THEN 100 N 5 -

is acceptable since THEN is a synonym for GOTO.

2.20 Sequence of Qgeratlon

The sequence of operation of UNRAVEL is as follows.
Firstly the program supplied on the input device is compiled.
Then, without any further command, this program is automatically
run. At the start of each run two newlines are sent to the
results stream. A run is ended either by a fatal error or by con-
" trol reaching the end of the program.

KNL7 - 3/1 KUSE/UNRAVEL

Chapter 3 Error messages

There are two types of error: syntax errors, which are
detected when the program is being compiled, and run-time errors,
which are detected when the program is being run.

3. 1 Syntax errors

Syntax errors cause the current statement to be ignored.
(If the statement is labelled and the label is correct then this
will not be ignored. Similarly if an IF clause precedes) Syntax
errors do not prevent a program being run. The following is a
complete list of error messages that correspond to syntax errors:

(a) UNMATCHED PARENTHESES.

(b) WRONG SYSTEM VARIABLE. A variable name begins
with 2 and is not the name of a system variable.

(c) MISSING QUOTE. This error, which applies to the

string statement, is only detected at the end
of a line.

(d) MIS-USE OF LABEL. The same statement has two
labels or the same label is used twice.

(e) INCORRECT EXPRESSION.

(£) STATEMENT WRONGLY TERMINATED.

(g9) ILLEGAL SYNTAX.

The last three messages are general ones covering a
multitude of situations. They do not always indicate the true
cause. For example the digits 8 and 9 will act as terminators
for an octal constant and might in turn lead to message (f).

3. 2 Run~time errors

Of the run-time errors, some cause the run to be aban-
doned while others are not so fatal. Errors of the fatal kind
are :

KNL7

(a)

(b)

(c)

(a)

(e)

3/2 KUSE/UNRAVEL

SUSPECTED ENDLESS LOOP. The number of backward
jumps has exceeded the value of 2GO.

ILLEGAL RETURN. A RETURN statement has been
executed when the stack of return links is empty.

STORAGE EXHAUSTED. (This message can also occur
at compile~time but, being fatal, is classed as a
run~time error.) An endless recursive loop or a

_ program that is too large for the available

storage are possible causes of this. error.

REFERENCE TO UNDEFINED LABEL number. Labels are
checked at the very start of a run, and, if a
label appears on a GOTO or GOSUB statement with-

out being defined, this error occurs.

CANNOT RUN. Program has not been sucessfully
compiled because of (c¢) and (d) above and
therefore cannot be run.

The following run-time errors, all of which occur
during operations within expression evaluation,do not stop the
run. The result of the offending operation is assumed to be zero.

(a)

(b)

(c)

DIVISION BY ZERO.

ILLEGAL FIELD CODE. The field operator has
an illegal second operand.

«s. IS WRONG ADDRESS. Illegal indirection -
e.g. out of range.

RNL7 3/1 KUSE/UNRAVEL

Chapter 4 Examples

This Chapter shows some short examples that illustrate
the usage of the main features of UNRAVEL.

4. 1 Output statements

Output statements usually come in groups, consisting of
strings, values, newlines, etc. If a string precedes a value then
it is usually best to put a space at the end of the string to sep-
arate the two. Similarly if a string follows a value. For
example

"X HAS VALUE ";D:40;", WHICH POINTS AT ";D::40;NL

With a little effort it is possible to achieve quite
pleasing output formats. For example assume that the variables
LASTBL, STACKPT and TOPPT are stored at offsets 3, 12 and 16 from
the current base, respectively. STACKPT and TOPPT point at the
start and end of a stack, which contains decimal values. LASTBL
points at some intermediate point on the stack. The following
program prints out the stack in a diagramatic form such as

STACKPT —===-= > 3
7

. 1

LASTBL «~===w= > 2
2
1
4

TOPPT —=—~—=- > 0

The program is
LET X= :12
"STACKPT ~—w=m—~- > "
10 D:X ; NL
LET X= X+1
IF X= :8 "LASTBL =====- > ": GOTO 1O

IF X NE:16 TAB 2; GOTO 10
"POPPT —===m= > ", D:X;NL

RNL7

4,2 Subr

outines

subroutine

100

999

The following

LET PARAM
GOSUB 100
LET PARAM
GOSUB 100
LET PARAM
GOSUB 100
GOTO 999
REM THIS 1IS
IF PARAM = 1
IF PARAM = 2

4/2 KUSE/UNRAVEL

example illustrates the use of a simple

£ 20
121
222
THE SUBROUTINE

"RED"; NL; RETURN
"GREEN"; NL; RETURN

"ILLEGAL COLOUR"; NL

RETURN

KNL7 _ 5/1 KUSE/UNRAVEL

Chapter 5 UNRAVEL on the ICL 4130

There are two implementations of UNRAVEL for the ICL
4130. One is called KUNRAVEL and works as a KOS sub-system and
the other is called NUNRAVEL and runs directly under the NICE
executive., Apart from their operating environment the two im-
plementatiéns are almost identical not only in the machine-
independent features but also in the machine-dependent features
described in this Chapter. Hence except where otherwise stated
all facilities decscribed here apply to both KUNRAVEL and NUNRAVEL.

5. 1 Machine~depéndent'operations

The word size for the ICL 4130 is 24 and the machine
base is octal. Arithmetic operations work as described in the
previous Chapters. There is no special facility for dealing with
floating-point representations.

The initial values of ZBASE and all the other system
variables that are possible settings for ZBASE are absolute
addresses containing bit 21. For the indirection operator the
address to be accessed (i.e. the result of adding the operand to
ZBASE) is checked to see that it includes bit 21 and that the
address part is less than the contents of absolute location 165
(STORESIZE). An error is forced if either of these conditions
does not hold. If the user wishes to create his own settings
for ZBASE it is therefore best to make these absolute addresses
with bit 21 in them. In particular

LET - ZBASE = 04000000
could be used to look at DES-2.
The field operation on the 4130 is defined such that
El, E2 means the last E2 bits of El if E2 is positive and the
first -E2 if E2 is negative. Thus for example

012345671,8 is 0271 .
012345671,-8 is 051

If the absolute value of E2 exceeds 23 or is zero an error is
forced. '

KNL7 5/2 KUSE/UNRAVEL

5. 2 Printing formats

"O" (the letter 'Oh"not the digit zero) is allowed as a
synonym for the "M" statement.

In normal character printing the value of the operand is
interpreted as four six-bit characters. . All characters are taken
as in-shift. If a shift character is encountered the character
"4" is printed in its place. 1In limited-field character printing,
the value of the operand is always interpreted as a single 7-bit
character, irrespective of what field code is used. Hence the -
last seven bits of the operand are extracted and if the first of
these bits is one the character is taken to be in the out-shift
set. (The character "4" is printed in place of the shift charac-
ters given by octal codes 76, 77, 176 and 177). Hence, for
example, if the value of the variable W is to be interpreted as
a 7-bit character the most natural way to do this is to write

c w,7

Limited-field octal printing.works exactly as described
earlier in the manual, i.e. enough octal digits to completely
cover the field are printed.

If any lines of output become too long an extra newline
is automatically inserted. '

5. 3 Operating instructions for XKUNRAVEL

~
Operating instructions for KUNRAVEL and NUNRAVEL are, '
of course, completely different.

KUNRAVEL runs as a KOS sub-system and is entered by the
KOS command -

&ENTER KUNRAVEL number DR-spec

where number gives the KOS device number of the default input
device of the KOS sub-slave to be examined. The number may be
omitted, in which case the current sub-slave is assumed. If a
specified number does not correspond to the default input device
of an existing KOS sub-slave then KUNRAVEL returns to command
status, giving the error message NO JSB. The significance of
number is that it determines the initial settings of ZBASE and
ZJSB (q.v.). Many KUNRAVEL programs, however, look at executive-
level information rather than sub-~slaves and these programs start

KNL7 5/3 KUSE/UNRAVEL

by resetting ZBASE. In such cases the initial setting of ZBASE
is immaterial and. number can sensibly be omitted.

At the end of a compilation a run is commenced automa=
tically, even if errors have occurred. Use of I/0 is according
to the usual KOS conventions. A break at any time causes a return
to command status within KUNRAVEL. . There are two subsidiary .
commands, . namely AR '

&SCR number DR-spec

which restarts from scratch (i.e. it'is identical in effect to
ENTER KUNRAVEL but saves the overheads of reloading), and

&RUN number DR-spec

which re-runs the program previously compiled. In each case the
argument list has the same meaning as for the ENTER KUNRAVEL
command (except that RUN needs no data device). If compilation
has not been completed then RUN commands are rejected.

It is not possible to change or extend a previously
compiled program.

On entry KUNRAVEL borrows the largest available block
of user's workspace and uses this for the compiled program, etc.
It is therefore not very useful to use KUNRAVEL to examine the
KOS sub-slave in which it is running as it will end up by looking
at itself.

5. 4 Operating instructions for NUNRAVEL

NUNRAVEL runs under NICE and is best used under BATCH,
though it is possible to run it directly from the control tele-
printer. It uses ACIO for its input. and its results output.
Channel 36, which defaults to cards, is. used for input and channel
34, which defaults to the line-printer, is used for output. Input
that consists of several different parts can be dealt with by re-
assigning channel 36 during the input (in a similar way ‘to the
use of channel 1 for NEAT), for example .

&NUNRAVEL ;
LET PARAM=32

&ASSIGN; 36 ;DC; 2 ; UNRAVL, XXX;
SASSIGN; 36;DC;2; UNRAV2, XXX;
"SUCCESS" ;NL

144

KNL7 5/4 KUSE/UNRAVEL

Note that the card terminator (4++) must always be present if
input is initially from cards. : :

Error messages go straight to the line-printer.

When it commences execution, NUNRAVEL increases LOWADD
by 2000 and uses the area thus reserved for its workspace. This
default allocation can be overridden by a numerical parameter on
the call of NUNRAVEL, e.qg.

&UNURAVEL; 4000;
might be used for a very long program.
Other possible parameters to thé call are
L meaning iist (on the 1ineprinter) all the input.

LC meaning list that part of the input that comes
from cards. :

SET meaning stop at the end of compilation (see later).
Ordering of the parameters is immaterial, e.g.

&NUNRAVEL; SET',1000,LC:
is allowed. Illegal parameters are ignored. '

When using NUNRAVEL to examine core after a certain
occurrence there are two possible sequences of operation

(a) Occurrence happens; NUNRAVEL is loaded:
compiles program; runs.

(b) NUNRAVEL is loaded; compilés program;
occurrence happens; NUNRAVEL runs.

Sequence (b) is by far the better since the act of loading
NUNRAVEL overwrites a lot of core, and this might be just the core
that needs to be looked at. Thus the SET parameter is provided.
This causes NUNRAVEL to surrender control at the end of compilation,
but to remain poised for a later run. The next entry to NUNRAVEL
is then taken as a command to run the program. Thus a typical
sequence of BATCH cards when NUNRAVEL was examining the effects
of running a program called FUNNY might be:

KNL7 5/5 KUSE/UNRAVEL

&NUNRAVEL; SET;
UNRAVEL program
444

&FUNNY;
&NUNRAVEL;

Once NUNRAVEL has been SET all subsequent calls are
taken as instructions to re-run the same UNRAVEL program. If a new
program, is required NUNRAVEL should be CANCELled and re-loaded.
(It is also best to do this even if it has not been SET. Other-
wise it will keep taking new workspace areas.)

NUNRAVEL can also be used to supplement.PM after. a KOS

- logical error. It should be SET before KOS is entered. When a
logical error occurs in a batch run, KOS checks to see if NUNRAVEL
is in core and, if it is, enters it with the parameter "KOS".

When NUNRAVEL is thus entered it is said to be in KOS-mode. When
a KOS-mode run ends, NUNRAVEL returns control to KOS, which .then
runs PM. It is planned to provide a library of standard NUNRAVEL
programs that are useful in these circumstances. If NUNRAVEL is
entered with the parameter "KOS" without having been SET, then
the error message NOT SET is given. . .

5. 5 System variables

A list of the available system variables aﬁd their uses
appears below. Users are advised not to change the values of any of
these apart from ZBASE and. perhaps ZGO.

ZGO Limit on backward GOTOs. Initialized to 10000.

ZBASE Base for indirect addressing. 1Initialized to value
of ZSLAVE (see below) except that NUNRAVEL, when not
in KOS-mode, 1nitializes it to the value of ZNICE.

ZNICE Base of world in which NICE, KOSEX, MCP, etc. operate.

ZSLAVE Base of KOS sub—slave‘of interest.

ZJSB Base of JSB (Job Status Block) of KOS sub-slave of
interest.

ZPROG, ZENDPROG, ZSIZEMC, .describe the current program.
ZMC Initially zero but re-set by PROG
command (q.v.). ' ‘

KNL7 5/6 KUSE/UNRAVEL

When NUNRAVEL runs in KOS-mode, ZSLAVE and ZJSB refer
to the KOS sub-slave that caused the logical error. When NUNRAVEL
is not in KOS-mode they are irrelevant and are given the initial
value zero.

5. 6 The PROG command

The purpose of the PROG command is to set some system
variables to point at a given program so that the user can examine
it more easily. The user specifies the program name as an argu-
ment to the PROG command e.gq.

PROG KOSEX

The program name should consist of an identifier of at most eight
characters. Any characters beyond this are ignored.

The PROG command works in a similar manner for KUNRAVEL
and NUNRAVEL. However NUNRAVEL is slightly simpler and will be
described first.

5. 7 PROG for NICE programs

For NUNRAVEL when not in KOS-mode the action is as fol-
lows. The program name is looced up in the NICE table to find
where in core it lies. The layout of a single~-chapter program
in core is as follows (assuming it has been assembled by NEATER):

Start of main chapter —— 8 —5
Header
jnformation

(8 words)

Signposts andg
V~literals

Constants

Data

Start of normal chapter————-—jbormal chapter
headerword.
(2 woxds)

i Code

-~

~

KNL7 5/17 KUSE/UNRAVEL

The PROG command causes four. system variables to be set to describe
this in the following way.

ZMC is the base of the start of the main chapter.
ZSIZEMC is the size of the main chapter. .
ZPROG gives the S-value of the start of the normal

chapter (i.e. 2 words before the first instruction).

ZENDPROG gives the S-value of the last instruction in
. : the program. (If -the program has a self cancelling
interlude this may have been overwritten.)

S-values are as they appear in the world that NICE operates in.
Bits 24 to 17 are zero. Note that all chapters are assembled to
contain.an even number of words, an extra word with value zero
being added on to accomplish this where necessary. Hence
ZENDPROG may refer to an instruction that is one beyond what the
programmer thinks to be his last instruction.

It is often useful to print out'all the variables in a
NICE-based program, but it can be seen from the above picture
that the position of the variables depends on the number of con-
stants and V-literals. The relative position of data is given,
in octal, at the end of a NEATER listing. However if a program
is continually being changed this is not very useful. A much
better way of finding data is to place a unique value as the last
constant, e.g. 0:76543210, and search for this. Assuming this
has been done, the following UNRAVEL program would print out, in
decimal, the values of all the variables in a program. FEach value
is preceded by its octal offset within the data area so that it
could be compared with a NEATER listing.

PROG XXX
LET 2BASE = 2MC
REM START SEARCHING FROM END OF HEADER INFORMATION
 LET X = 8
10 IF :X NE 076543210 LET X = X+l; GOTO 10
LET X = X+1
LET VARNO = O ~
20 M VARNO ; TAB; D :X; NL
LET X = X+1 -~
LET VARNO = VARNO+1
IF X<ZSIZEMC GOTO 20

KNL7 ‘ 5/8 KUSE/UNRAVEL

' The usage of ZPROG and ZENDPROG is for interpreting
subroutine links. Assume, for example, that X points at a storage
location that contains a link to a point in the program %%Z; then
the following UNRAVEL program would give the octal offset of the
link in the program. This could then be compared directly with

a NEATER listing. '

PROG 227 :

LET LINK = :X& 0177777 :

IF LINK>ZPROG IF LINK LE ZENDPROG GOTQ 100

"LINK IS OUTSIDE PROGRAM 2%%. VALUE= 'iM LINK: GOTO 999
100 "LINK IS AT ";M (LINK-ZPROG)/2; "N ON A NEATER LISTING"
999 NL |

Note that ZPROG and ZENDPROG are S-values and cannot be

used as bases. However ZMC+ZSIZEMC is the base corresponding to
ZPROG and ZMC+ZSIZEMC+ (ZENDPROG-ZPROG) /2 corresponds to ZENDPROG.

5. 8 PROG for KOS programs

NUNRAVEL when in KOS-mode and KUNRAVEL look at KOS
programs. The program name is therefore searched for on the KOS
table, not the NICE table. Otherwise the workings are exactly
as cdescribed previously. ZPROG and ZENDPROG contain bit 17 if
KOS is in common program mode. When KOS is not in common program
mode these S-values are set as they would appear to the specified
KOS sub-slave, and therefore not as they would appear to NICE.

Two extra facilities are available. Firstly,
' PROG '

on its own means the currently used sub-system or, if none exists,
then COMMAN. (This information is derived using the fixed location
USUBSYS at offset 180 in the sub-slave.)

- The other extra facility, wﬁich is bnly available in
NUNRAVEL in KOS-mode, is that

PROG LOG

means the program that was responsible for the logical error that
caused NUNRAVEL to be entered. (This information is derived by
looking at the wvalue of the S-register when the logical error
occurred. If this S-value is outside any existing sub-system
the error action described below is taken.)

KNL7 5/9 KUSE/UNRAVEL

In the case of both the extra facilities a message is
printed to tell the user which program has been selected, e.g.

PROG SET TO KOSML1 IN LINE 13

There is one extra restriction. If KOS is running under
DES-1, PROG commands are forbidden. If they are used they give
rise to the error message described in the next Section.

The user should be sure that, when using PROG under
KUNRAVEL, the program to be looked at will remain in core. If
it is released and overwrittem while KUNRAVEL is looking at it,
the results will be disastrous.

5. 9 PROG errors

In all cases if the program required by PROG is not
found then the error message

NO PROGRAM FOUND IN LINE ...

is output. The run continues and none of the values of system
variables is changed.

- N ' .~ ’
P R
3 Vv .
A
B .
, . .
. “
Y
N .
. :))
’ '
- . i i
e "t : ’ co
. e .
S
. \ .

