THE ML/I MACRO PROCESSOR

Implementing software using the LOWL language

Supplement 2 UNRAVEL

P.J. Brown

Computing Laboratory

University of Kent at Canterbury
September 1972.

(:::) 1972 P.J. Brown

Introduction

UNRAVEL is a programablec dumping program. It has
proved useful in two main areas: ~

(2a) providing a better debugging aid than a traditional
dump in binary (octal, hexadecimal, etc.) notation.

(b) monitoring dynamic systems.

Anyone wishing to implement UNRAVEL must first read
carefully the User's Manual of an existing implementation, with
particular attention to the machine-dependent and operating
system dependent features that are described in Chapter 5 of
each User's Manual.

On reading such a manual it will be apparent that
UNRAVEL contains a reasonable degree of machine-dependence.
(There may even be a few machines, notably those where the con-
cept of a "word" is not meaningful, for which the basic design
of UNRAVEL, as mirrored by its MI-logic, is unsuitable as it
stands, and an implementation via LOWL for these machines would
not be useful.)

In the machine-independent implementation of UNRAVEL
described here, all the machine~dependent features have, of
course, been placed under the control of the implementor. This
has meant that the MD-logic is comparatively large. It is, how-
ever, still much smaller than the MI~logic, and so the effort of
mapping the MI-logic is generally worth while.

Selection of system variables

One of the first tasks of the implementar is the
selection of the system variables that will be available on his
implementation.

As a guide, the following are some possible uses:

(a) Preservation. The action of UNRAVEL may destroy
some of the things it is supposed to be dumping,
particularly the contents of registers. These
can be preserved when UNRAVEL is entered and made
available to the user as system variables, e.q.
ZACCl might be accumulator one.

(b) Pointers., System variables might be set to point
at important areas of store that a program might
wish to examine, e.g. system tables, buffers,
workspace, stacks, etc.

(c) Control. The variable ZGO provides run-time
control of loops. The user might wish to provide
his own variables of a similar nature, e.g. con-
trol of output (line length, device to be used,
etc.).

Extensions to LOWL

The following are the extensions to LOWL required by
the MI-logic of UNRAVEL.

1. Character set

The character set of UNRAVEL uses the additional
character "4" (shift operator), which occurs as operand to the
CCL statement.

2 Character constant

UNRAVEL needs an additional named character constant
called BASREP., This is concerned with the M statement in
UNRAVEL, which means print in machine format (e.g. octal or
hexadecimal)., It is convenient to have a machine-dependent
synonym for M, e.g. O (for octal) or X(for hexadecimal), and
BASREP provides for this. The value of BASREP must be the .
internal code for a letter; if no alternative to M is required
then the value of BASREP should be the internal code for M.

3. Subsidiarv macro of the OF macro

The macro LMBS, which is, like LNM and ICH, a sub-
sidiary macro of the OF macro, should be assigned the value of
the machine base. For example on an octal machine LMBS should
be defined as eight.

4, The ZNAMES statement

The MI-logic provides only for the names of those
system variables which should be present in all implementations.
These are 2GO0 and ZBASE. The replacement for the ZNAMES state-
ment should supply the machine~dependent ones. The form of
these should be the name followed by its length, these name=-
length pairs being placed end to end. For exampic ‘f the names

3

(which must be identifiers beginning with 2) are ZTABLE, Z,
and ZBUFF then ZNAMES might be replaced by

STR 'ZTABLE'
CoN OF (6*LCH)
STR 'z’

CON OF (LCH)
STR 'ZBUFF'
CON OF (5*LCH)

ZNAMES has no argument.

5, The MULT and DIV statements

The MULT and DIV statements have the forms
MULT \'4 Multiply A by value of V.
DIV v Divide A by value of V.

Overflow can be ignored. The MI-logic detects division by zero
as an error and does not call DIV in this case.

Introduction to the MD=logic

The I/0 requirements of UNRAVEL are very simple. One
input stream is needed, and there are two notional output streams,
the messages strasam and the reosults stream, as described in the LOWL
manual. For initialisation UNRAVEL needs only the common
initialisation code described in the LOWL manual. The stack
area is mainly used for storing the source program, which is
compiled into reverse Polish form. A reasonable default size
for this is two thousand words, though the user should have a
facility for asking for more.

The implementor may wish to introduce his own error
or warning messages into the MD-logic, for example on detecting
an I/0 error. The MI-logic maintains a variable called LINECT
which gives the line number of the program statement currently
being compiled or run, and it may be useful to include this in
the implementor's own messages.

The MD-logic subroutines are listed below.

The MDQUIT subroutine

The MDQUIT subroutine is entered when the run of the
program has ended (either normally or because of an error). Its
action should be to close all I/0 - there may be an incomplete
line on the results stream waiting for output - and release
resources. After doing this it should not return to the point
of call but should surrender control to the containing system,
or, in an interactive environment, perhaps communicate with the
user to ask him what to do next.

It is possible to re-run a program without re-compiling
it. This is done by branching to the label RERUN in the MI-logic.
Hence an implementation might provide a command of form

RERUN param

where param changes the run in some way, e.g. changes the area of
core being examined, or the results stream.

The MDRIN subroutine

The MDRIN subroutine, which has no parameter and only
one exit, is used to perform run-time initialisation. It is
called at the stage the program has been compiled and is just
about to be run. The main action of MDRIN is to set initial
values for all the system variables. These initial values
should be stacked on the backwards stack, the stacking being
done in the opposite order to which the variables are named.
(The names are those generated by the ZNAMES statement, followed
by ZBASE and 2GO.) For example, if the ZNAMES statement is de-
fined in the way shown earlier, the initialisation might be
performed thus

LAL 10000 '

BSTACK initial value for 2GO
LAL o)

BSTACK initial value for ZBASE
LAV -

BSTACK initial value for ZBUFF

BSTACK initial value for 2

BSTACK initial value for ZTABLE

In some operating environments MDRIN may be given some
other actions as well. For example, it is possible to delay
selection of the results stream until this stage since the only
output produced during compilation is error messages. Morecv:=l
it is possible to close the input stream since no input is needed
at run-time.

In one implementation, a "SET" mode has been made avail-
able; this allows a program to be pre-compiled ready for a later
run. In this case MDRIN surrenders control to the containing
operating system. The MI-logic is subsequently re-entered at the
label RERUN each time a run is required. Of course, the MI-logic
and its variables and stacks have to remain unchanged during such
breaks. (Note that when a run is started by jumping to the label
RERUN, MDRIN is subsequently called again. The MD-logic should
therefore set a switch to tell MDRIN whether a SET or a run is in
progress.)

During the run the variable SYSPT always points at the
place on the backwards stack where the value of the first system
variable, ZGO, is stored. The value of the Nth system variable
is therefore at the address given by

SYSPT - OF((N-1) *LNM)
This might be used to look at any system variables that are used
for control purposes, e.g. the fifth variable might give the
current device number for results output.

The MDLINE subroutine

MDLINE is a subroutine to read lines of input, i.e. the
UNRAVEL program to be compiled. It has two exits and uses exit 1
if input is exhausted. Otherwise it reads a line of input into
a buffer, sets BUFFPT to point at the first character of the
buffer and uses exit 2. (BUFFPT should be reset on each call of
MDLINE, since the MI-logic changes it.) MDLINE is responsible
for reserving space for the buffer, The text in the buffer should
be terminated with the newline character, as represented by NLREP.
Thus, for example, a null input line would cause the buffer to
contain simply a single newline character,

6

If an implementation supports such options as listing
of the input or switching of input streams (e.g. taking part of
the input from disc), then MDLINE is responsible for these.

The MDERCH subroutine

The MDERCH subroutine, which has one exit, outputs on
the messages stream the character in C.

The MDERNM subroutine

The MDERNM subroutine, which has one exit, outputs the
number in A on the messages stream. This number should be
converted to a decimal representation. It may be negative, in
which case a minus sign should be output in front of it. Redun-
dant leading zeros should be suppressed.

For example the MI-logic code

MESS 'ABC'

LCN NLREP

GOSUB MDERCH, X

LAL o

SAL 123

GOSUB MDERNM, X

MESS 'XYz$'
should generate the two lines

A

-123XY2

The MDOUCH and MDDOU subroutine

The MDOUCH and MDDOU subroutines are identical to the
MDERCH and MDERNM subroutines, respectively, except that they use
the results stream rather than the messages stream. In the case
of MDOUCH the character to be output may be a tab.

The MDMOU subroutine

The MDMOU subroutine, which has one exit, outputs on
the results stream the "machine" representation of the word in
A. This representation might be, for example, six octal digits
if the object machine base is octal and the word size 18 bits.

MDMOU should test if printing is to be limited-field
(see User's Manual) by looking at the variable TEMP. If TEMP
is not zero limited-field printing applies, and the variabile
TYPE, which gives the value of the second operand of the most
recent field operation, should be examined in determining how
many digits to print. (Alternatively it might be easier for the
implementor to make the MDFLD subroutine (q.v.) set some vari-
able that MDMOU can examine to give a more direct indication of
the number of digits to be printed.)

The MDCOU subroutine

The MDCOU subroutine, which has one exit, outputs on
the results device a character representation of the word in A.
Since most machines allow several characters to be packed into
a word, MDCOU will normally output a string of characters. This
output of characters should be restricted by limited-field print-
ing in the same way as in MDMOU, i.e. the variables TEMP and
TYPE should be examined. Thus if the field code 6 selects
one of the characters packed into a word then

C X,6
should output only one character.

The MDNUM subroutine

The MDNUM subroutine has two exits and a parameter in
A, The parameter is either ten or the machine base as given by
LMBS. MDNUM tests the character pointed at by BUFFPT. If it is
a digit less than the parameter it puts the equivalent decimal
value in TEMP and uses exit 2; otherwise it uses exit 1.

In the case where digits have contiguous internal
codes, MDNUM can be encoded thus

SUBR MDNUM, PARNM,2

LCI BUFFPT, X

Subtract from C the internal code of the
digit zero and place the resul® in A

STV TEMP,P
CAL o
GOLT MDEX1,4,X,X q
LAV TEMP,R
CAV PARNM,X
GOGE MDEX1,1,X,X
EXIT 2,MDNUM
[MDEX1] EXIT 1,MDNUM

Note that on a hexadecimal machine where the letters A to F rep-
resent the numbers 10 to 15, these letters would count as digits.

The MDSHIF subroutine

The MDSHIF subroutine has a parameter in A and one exit.
It should take the word pointed at by LFPT and shift it by the
number of bits given by the parameter = positive means left shift,
negative means right shift - and exit with the result in A.

Shifts should be logical ones, not arithmetic ones, and
should not be circular. Shifts longer than one word size of the
object machine should therefore produce an answer of zero.

The MDFLD subroutine

The MDFLD subroutine has a parameter in A and two exits.
It effects the "field" operation. The way this is done is chosen
by the implementor, but it should be such that any commonly used
field can be accessed. MDFLD should take the word pointed at by
LFPT, extract the field designated by the parameter, shift the
result right so that the rightmost bit of the field is the right-
most bit of the result, and use exit 2 with the result left in A.

If the field code is illegal, exit 1 can be used. The
MI-logic will then output the message

ERROR IN LINE ... - - ILLEGAL FIELD CODE =-- RESULT ASSUMED TO BE O

and continue the run.

The MDAT subroutine

The MDAT subroutine, which performs indirect addressing,
has a parameter in A and two exits. The parameter is the operand
of the indirection operator with ZBASE added to it. If this is
an invalid address, exit one should be used. The MI-logic will
then output the message

ERROR IN LINE ... == ... IS WRONG ADDRESS -- RESULT ASSUMED TO BE O

and continue the run. Otherwise the word pointed at by the
parameter should be placed in A and exit two used.

There are many machines where the minimum addressible
unit is smaller than a word, for example byte machines. For
these machines, the parameter of MDAT might not point at a word
boundary. 1In this case it is suggested that enough bits be ex-
tracted from the store to make up a word, making the assumption
that a word starts where the parameter points. For example in
the situation shown in the following picture

parameter

\
Word 1 ol 02
Word 2 03 04

the result should be 0203. (There is a slight problem if Word 1
is the last word in store; in this case it should be assumed that
lord 2 contains all zeros.)

The MDPROG subroutine

The MDPROG subroutine, which has a parameter in A and
one exit, is used to effect the PROG statement. It should find
where the named program is located in store and set appropriate
system variables to describe it. (Under operating systems where
this is impossible, the PROG statement would need to be given
some other meaning. In the worst case the MDPROG subroutine would
have to be null, thus making PROG statcments <aqulvalent to comments.)

The parameter points at the argument to the PROG command,

10

as supplied by the programmer. This is terminated by the character
NLREP, Hence if the programmer writes

PROG AB/CD
this is compiled into the equivalent of
[xxx) STR 'AB/CD'

NCH NLREP

and at run-time MDPROG is called with a pointer to the character
string labelled by XXX. Note that this string is an exact copy
of the string supplied as argument by the programmer; the only
omissions are spaces and tabs at the very start.

Actually there is nothing to compel MDPROG to interpret
the string as a program name. It can be interpreted in any way
that seems suitable, thus making MDPROG a generalised machine-
dependent statement. Even if the string is generally interpreted
as a program name, some exceptions can be made; for example a
null string may mean that some standard options should be set.

In whatever way the string is interpreted, there are bound to be
cases that should be treated as errors. In these circumstances
MDPROG is responsible for giving the appropriate error message.
It should exit in the normal way.

Documentation

When an implementation is working, the implementor needs
to provide documentation for the user. The UNRAVEL User's Manual
is written in such a way that all machine-dependent features are
described in a single Chapter, Chapter 5. Hence it is only
necessary to rewrite this one Chapter (and perhaps the title page
and table of - contents) for each new implementation.

Final cautionary words

It is very important that a dumping program be robust;
if it fails, all is lost. Hence it is desirable that, whatever
goes wrong, it should be impossible for UNRAVEL to cause a hard-
ware trap. Hence great care should be taken in coding the rou-

tines described earlier, particularly the MDAT subroutine, which might

cause an addressing fault. Another possible source of danger is
overflow due to the generation of very large numbers.

In one sense security clashes with utility. Clearly &
dumping program should itself be as small as possible, On the
other hand, it should, as far as possible, be self-contained
since routines outside it might be corrupt. It should there-
fore contain its own I/0 routines. The implementor must judge
how to balance these conflicting requirements for his particular
circumstances.

