THE ML/T MACRO PROCESSOR

Imglementg‘ g software using the LOVL language

Supplement 4 : SCAN

P, J. Brown

Computing Laboratory

University of Kent at Canterbury
April 1972, revised September 1972

D.

1/1

Chapter 1 Extensions to LOWL

Introduction

SCAN is a simple text processing language designed for
conversational use. A manual describing SCAN and its implementation
under the Kent On~line System (X0S) is available separately. The
logic of SCAN has bheen implemented using the language LOWL, so that
it can easily be transferred between machines. Because SCAN per-
forms extensive character manipulations, it has been necessary to
add certain extra character operations to LOWL. Most of theue
should be trivial to implement.

The SCAN compiler compiles into a pseudo machine-code
program which is interpreted at run-time. This program consists
of a sequence of pseudo-ops. Each pseudo-op has an operation code
and some of the pseudo-ops also have operands. The operation
codes of pseudo-ops that possess operands are integers in the range
0-14 and the operation codes of pseudo-ops without operands are
integers in the rance 16-63. Operands are either addresses of SCAN
variables or non-negative integers not greater than MAXINT (which
is the highest permissible integer for a given SCAN implementation
and is defined in the initialization code - see Chapter 2). 1In
the former case the variables are either declared in the LOWL logic
or, in the case of C variables and N variables, reserved during
initialization, ' ' .

The pseudo machine--code prooram is very close to Reverse
Polish notation. For the reader who is interested full details
are given in Chapter 3. However the implementor does not need to
know the details of how pseudo-ops work, but he does need to
choose how they are to be represented on his hardware. The
following examples show some possible choices.

Example l: byte machine

Pseudo-ops with operands: one byte
Pseudo-ops without ownerands:three or four bytes

Examole 2: 24-bit word machine

All pseudo~ops: first six bits: operation code
last eighteen bits: operand (unused if
none)
Example 3:- 16~bit word. machine

Pseudo-ops with operands : first four bits: operation code
last twelve bits: operand

Pseudo-ops without operands: first four bits: 1111
next six bits: unused
last six bits: ocpescation code

1/2

This example. shows a specially concise coding to give as much room as
possible for the operand field, Even so, it would introduce limita=
tions as MAXINT would need to be set to 4095 and all variables would
need to be in the first LK of storage (unless a special trick is em-
ployed - see later), If these limitations were thought to be un-
acceptable, pseudo-ops with operands would need to occupy two words,

Several of the extensions to LOWL needed by SCAN are concerned
with creating and extracting these pseudo-ops. Pseudo-ops must occupy an
integral number of storage units on the object machine, e.g. on an 8-bit
byte machine they could not be mads to occupy, say, 22 bits as it would %=
impossible to address them, (They need not, however, be aligned to word
boundaries on those machines where this is applicable, as they are always
addressed indirectly,)

Extensions to LOWL

The following is a complete list of the extensions to LOWL re-
quired for the MI-logis of SCAN,

Named Character constants

SCAN requires unique codes to be defined for the following
three pseudo~characters: NULREP, ZEOSREP and SOSREP, Any codes that do
not arise in normal input can be chosen to represent these.

The RCS statement
The RCS statement has the form
RCS name, OF

and is used to reserve core storage., The second argument specifies how
many units to reserve, The name should be attached to the start of the
area of store that has been reserved, (RCS is used to reserve space
for both integer and character variables., All the integer declarations
precede the character ones, so that the potential alignment problem that
might arise on machines such as IBYM System/36C is avoided, A glance at
the logic will show this.)

Subsidiary of the OF macro

The two following additional subsidiary macros to the OF macro
need to be defined:

LFN the number of units of storage occupied by a pseudo-op
with no operand,

LIN the number of units of storage occupied by a pseudo=-op
with an operand.

1,3

Large integer conétant

All occurrences of numerical constants have values less than 64
with the single exception of the instruction

LAL 1000
(which is used to set the initial value of L21).

Statements for manipulating the C register

The following extra statements are needed to manipulate the C
register. They work in a similar way to the corresponding statements for
manipulating the A register.

LCV ¥, 5111 Load C with value of V.,

STC Store C in ¥V,
S

STCI ¥, {P} Store C in address pointed at by V.
X

ccv ¥ Compare C with value of V,

With the exception of STCI, V is a character variable that has been pre-
viously declared using

RCS ¥V, OF(ICH)

The MULT, DIV and DEBUMP statements

The MULT and DIV statements have the forms
MULT ¥V Multiply A by value of X._
DIV V Divide A by value of V.

Overflow can be ignored, The MI-logic detects division by zero as an error
and does not call DIV in this case.

The DEBUMP statement has the form

, DEBUMP V,N-OF Decrease value of V by literal value N-OF,
(This may clobber Z,)

1/
The RMESS statement

The RMESS statement is exactly similar to the MESS statement in
LOWL except that it uses the results stream rather than the messages stream.

The CTOA and ATOC statements

The CTOA statement copies the value of the C register into the
A register and the ATOC statement does the opposite. Neither statement has
an argument, If the A and C registers are implemented as physically separate
registers it may be that the C register is smaller than the A register. in
this case the high order bits of the A register should be ignored. ATOC is
used before an assignment to a character variable, e.g.

10 LET C1 =-1

The User's Manual for an implementation should make it clear how the result
may be truncated in such an assignment.

Statements for manipulating pseudo-ops
The following are the statements for manipulating pseudo-ops.
LAFUN V.. Load A with the operation code of the pseudo-op pointed at by V.

Hence A should have a value in the range 0 - 63 after the execution of this
statement. Note that the pseudo-op may or may not have an operand, If
pseudo-ops are encoded in a "clever" way as illustrated by Example 3 earlier,
then the LAFUN statement itself will need to be correspondingly clever to find
the correct field, shift it, etc.

LARAND v Load A with operand of the pseudo-op pointed at by V.
The pseudo-op will always have an operand if LARAND is used. _—

INST N Stack on the forwards stack a pseudo-op whose operation code is
given by N and whose operand is given by the value of A.

TFUNCT N Similar to INST but for pseudo-ops with no operand,

FUNCTV \'A Stack on the forwards stack a pseudo-op whose operation code is
given by the value of V., The pseudo-op has no operand.

Being stacking operations, INST, FUNCT and FUNCTV must update FFPT after having
assembled the pseudo-op at the top of the stack, The code to do this is as
follows (c.f, the FSTACK statement)

LAV FFPT,X
AAT, OF(LFN) or, for INST, OF(LIN)
STV FFPT ,P
CAV LFPT,A

G’OG‘E ERI!SO,....-

1/5

Two final points should be made ahout packing pseudo-ops
into the minimum possible space. Firstly, if, say, operands are
being stored in 12 hits, (thus allowing operands in the range
O - 4095) and all variables are stored between, say, address 5000
and address 6000, then the INST statement could subtract 5000 from
the operands of the pseudo-ops that have variables as operands in
order to get them into the range O - 4095. (The pseudo-ops with
variables as operands have the operation codes 2 to 5 inclusive.)
LARAND could perform the reverse mapping for these pseudo-ops.

Secondly, AT elements are joined together on chains

in the compniled program. If MAXINT is small (e.g. 4095) and a
program huge,it may be that the offset in a chain will exceed
MAXINT and not fit into an operand field. The MI-logic tests for
this situation and gives the error message “TOO MUCH” if it occurs.
If this error occurs frequently and is a serious inconvenience to
users, the implementor must change his encoding of nseudo-ops and
increase MAXINT. The situation is, however, highly unlikely.

I

2/1

Chapter 2 The MD-logic and documentation

Introduction

. The MD-logic of SCAN consists of some initialization
code together with a set of subroutines. - It has two main
functions:

(a) to provide I/O.

(b) to provide a command structure and
operating system interface.

The SCAN processor has three possible states:

(¢) compiling (either the original program
: or edits).

(1) running.
(2) listing.

(The variable STATE in the MI-logic is set to O, 1 or 2 to show
the current state.) The MD-logic must provide the mechanism for
letting the user specify which state he wishes to enter and which
I/0 devices he wishes to use. The XOS implementation, for
example, provides an overall entry command ENTER SCAN which
enters SCAN and goes into state O, and supplementary commands
PROG, RUN and TEXT. If non-default I/0 devices are required
these are specified by a suffix to the command. The RUN command
might, for example, have the various forms

RUN (console 1I/0)
RUN TO PRINTER (console input, printer output)
RUN FROM disc file TO disc file (disc I/0)

Clearly, each operating system has its own conventions and the
KOS method certainly need not be followed in other implementa-
tions.

The MI-logic distinguishes two kinds of output: the
messages stream and the results stream. The messages stream is
used for system messages and output produced by the WARN state-
ment; the results stream is used for the normal output produced
during listing and running. '

In addition the MI-logic requires an input stream to
exist during compiling and running.

2/2

Breaks

If SCAN is to be run conversationally, it is desirable
to allow the user to "break" at any time, i.e. to press some key
that stops the current activity and returns to command status.

A break must not destroy the current program,

The MI-logic has been designed so that breaks are
acceptable throughout any activity except compiling. During

compiling, breaks can only be accepted while within the MDLIKE routine

(84v.) . as at other times the program may be in an unstable state
(e.g. a chain may be being updated). This is no inconvenience
for the user as compiling of lines should be almost instantaneous,
so it will appear to him as if breaks are always acceptable,

)
It is suggested that the action for an acceptable break
should be to go to the MDCOM routine (g.v.) and for an unaccept-
able break to go to the MDQUIT routine (g.v.).
If breaks are to be catered for, it is suggested that
the variable STATE be used to record the status. The following
actions should be added to the MD-logic:
(a) initialization should set STATE to 2ero
before any possible break can occur.
(b) the.MDLINE routine should@, on 2ntry. nreserve
the old value of STATE and re-set STATE
to 3, and on exit should restore STATE to
its previous value.
Otherwise the value of STATE would be as set by the MI-logic.
With this scheme, breaks are acceptable when STATE is non-zero. P

The MD-logic is defined in detail in the ﬂollowing
paragraphs. :

~o

2/3

Initialization code

SCAN uses its .stack area mainly to store the user's program and
the current sentence. Obviously the stacks should be as large as practicable,
but experience has shown that useful SCAN programs can run using an area of less
than one thousand words.,

The numbers of C variables and N variables that are to exist is
defined by the SCAN user at the start of the session. The way this is done
will vary between implementations, and it is the duty of the initializatioun
code for each implementation to reserve storage for these variables,

In detail, the complete list of duties of the initialization
code is as follows:

(a) if necessary, set STATE to zero before any break can occur,

(b) reserve the C and N variables and set

NUMC = number of C variables,
ADDRC = address of first C variable (C1) minus OF(LCH).
NUMN = number of N variables.
ADDRN = address of first N variable (N1) minus OF(LNM).

(ADDRC and ADDRN gives the address of the hypothetical
elements Cf and Ng.)

(c) set MAXINT as the maximum allowable integer in the program.

(a) perform the common initialisation code described in the LOWL
manual.

The MDLINE subroutine

MDLINE is a subroutine that reads lines of input, either during
compilation or at run-time. It has two exits, exit 1 being vsed if data is
exhausted, Otherwise it reads a line of input into a buffer, sets BUFFPT to
point one character position before the start of the buffer and uses exit 2.
(BUFFPT should be reset on each call of MDLINE, since the MI-logic changes it.)

2/4

MDLINE is responsible for reserving space for the buffer. (Note
that the buffer must not be in read-only storage as a SCAN program
can change the buffer.) The text in the buffer should be termin-
ated by the newline character, as represented by NLREP, and NLPT
should be set to point at this character. Thus, for example, if
an input line reads "CHAPTER 1" this should be set up as follows

BUFFPT NLPT
L
CHAPTER 1 NLREP
Note that the MI-logic works in units of lines, each
terminated with a newline. This may necessitate artificially
adding a newline at the end of the very last line if the input
stream has an incomplete line at the end.

The MDERCH subroutine

The MDERCH subroutine, which has cne exit, outputs on
the messages stream the character in C. If this character is
SOSREP, EOSREP or NULREP it should be ignored. There is no
"guarantee that the value of C will be a legal character code.
For example the program might read

10 LET Cl = 134
20 PRINT Cl
This would result in MDERCE being called with the number 134 in C.

The action to be taken for illegal codes is up to the implemen-

tor. The user's manual for an implementation should specify what
this action is.

Note that MDERCH needs to cater for tab and newline
characters.

The MDERNM subroutine

The MDERNM subroutine,which has one exit, outputs the
number in A on the messages stream. This nwaber should be
converted to a decimal representation. It may be negative, in
which case a minus sign should be output in front of it. Redun~
dant leading zeroes should be suppressag.

2/5

For example the MI-logic code

MESS ‘ABC'
LCN NLREP
GOSUB MDERCH , X
LAL o]
SAL 123
GOSUB MDERNM, X
MESS 'Xyzg.*

should generate the two lines
ABC
-123XY¥2

The MDOUCH and.- MDOUNM subroutines

The MDOUCH and MDOUMM subroutines are identical to
the MDERCH and MDERNM subroutines, respectively, except that
they use the results stream rather than the messaces stream.

The MDTLIS subroutine

The MDTLIS subroutine has two exits. It is called
when a compile-time error message is beinc output, and its pur-
pose is to decice whether the offending statement should be
listed. 1In general, it should be listed only if the device used
for messages is different from the input device, i.e. if the
usage of SCAN is not conversational.

Exit 2 should be used if a listing is required, exit 1
if it is not.

2/6

The MDCOi: subroutine

The HDCOM subroutine is entered at the end of a compilation, run
or listing. It should close the I/0 - there may be incomplete lines left on
either the results stream or the messages stream at the end of a run, It
should then communicate with the user to find out what to do next, reset 1/0
devices if necessary, and re-enter the MI-logic at one of the labels PROG, RUN
or TEXT, depending on which activity is to be performed next.

The MDQUIT subroutine

The MDQUIT subroutine is called after a fatal error. It should
close all I/0 and terminate, -~

Documentation

When an implementation of SCAN is working, the implementor needs
to provide documentation for the user. This can, if desired, be a copy of
the KOS SCAN Manual with suitable alterations to cover changes in operating
system interface, use of I/0 devices, character set, size restrictions, action
at breaks, etc,

3/1

Chapter 3 The compiled code

The following paragraphs describe the compiled form of
a SCAN program. This information may be of use to the imple-
mentor if bugs arise. The following notation is used.

(2) * Pseudo-ops with operands are written
operation code/operand.

(b) Each field is followed by an indication of its
type and size. This is given by the name, in
parentheses, of the appropriate subsidiary macro
to the OF macro. For instance the pseudo-op 23
(which has no operand) would be written

23 (LFN)

(c) STR is used to mean the equivalent encoding to
the STR statement in LOWL.

A complete table of operation codes appears at the end of this
Chapter.

Within the compiled program,expressions are represented
in a Reverse Polish form. (See Software Practice and Experience,
July 1972 for a discussion of this.) This consists of pseudo-ops
to stack operands and pseudo-ops to operate on the operands at
the top of the stack. (The result, if any, is placed at the top
of the stack.) In addition each statement has two fields of
header information. For example the statement

10 LET N1 = L7+3

would be compiled as

7/10 | (LIN) Set statement number as 10
length of statement (LNM) '

4/ address of N1 (LIN) Stack address of N1l

2/ address of L7 (LIN) Stack value of L7

0/3 (LIN) Stack literal value 3

22 (LFN) Adad

31 (LFN) Assign

3/2

The program is stored with statements end-to-end in

numerical order.
form

7/0

The program is terminated by an end marker of

(LIN)

Statements themselves are encoded in the following way

7/statement number (LIN)

total size of encoded statement (LNM)

statement body

Present ;43
only if
there is | STR
a comment!

' NLREP

Nt e

(LFN)
'comment’ (...* LCH)
(LCH)

The statement bodies of the various types of statement

are as follows.

(1) Null statement

16 (LFN)
(2) STOP statement

20 (LFN)
(3) GOTO statement

If it is GOTO O then

17 (LFN)

Otherwise

10/statement number (LIN)

pointer to position of designated statement

(LNM)

(4) AT statement

element 1

elethent N

6/N

(LIN)

3/3

The elements on all AT statements are connected
together on two chains, which run right through the
program. One chain contains word-patterns, the other
elements that match Separators. WWord-patterns are
compiled in their original character form. The only
change that is made is that if there is a dash at the
end this is replaced by SPREP; otherwise NLREP is
added to terminate the word-pattern. Other AT ele-
ments are encoded exactly as if they were expressions.
Each element is preceded by an operation with code 9
(for word-patterns) or 8 (otherwise) with the operand
giving the relative offset of the next item of the
chain.

For example
AT HA:!’ CIy lr+ll’ :lPIG_u

would be encoded

9/0F (5*LIN+2*LCH) (LIN) Word-pattern chain
A (LCH) Word-pattern "A"
NLREP ‘ (LCH) Terminator

8/0F {LIN+LIN) (LIN) Separator chain
4/address of Cl {LIN) Stack value of C1
8/o0ffset of next (LIN) Separator chain
1/+ : (LIN) Stack the character "+"
9/offset of next (LIN) Word-pattern chain
P (LCH) l

I (LCH) L Yord-pattern "PIGY
G (LCH) J

SPREP (LCH) Dash at end

6/4 (LIN) Terminator

(5) LET statements, IF clauses

These are encoded entirely in Reverse Polish,
(6) PRINT and WARN. statements

18 (for PRINT) or 19 (for WARN) (LFN)
Reverse Polish
44 (LFN)

The main body is pure Reverse Polish except that elements
that are character constants are represented as follows:

3/k

46 {LFN)
STR '‘character constant' (...* LCH)
NLREP (LCH)

For example the statement
PRINT 9YXv*, Al TO AN3, L1+3

would be encoded

18 (LFN) Set stream as results

46 (LFN) Lona character constant

X (LCH) | wgyi

Y (LcH)

NLREP (LCH) Terminator

4/address of Al (LIN) Stack of address of Al
5/address of ADDRN (LIN) %gggkea3g£%8§"og 522D§¥-lo ic)
2/address of N3 (LIN) Stack value of N3 gre
28 (LFN) Stack address of array element
30 (LFN) Output multinle characters
2/address of L1l (LIN) Stack address of Ll

0/3 . N - (LIN) Stack literal value 3

22 (LFN) Add

41 (LFN) Output single integer

44 (LFN) End of output -~

Table of operation codes

The following table'defines all the existing pseudo-ops.
The column “"use of stack" should be interpreted thus

+ means adds n items to the stack.

means removes m items from the stack and uses
them as operands.

g s

—_— means does not use the stack.

Note that a pseudo-op such as addition, which removes the top two

items from the stack and then puts the result back, is described
as -2,+1.

3/5

Code Meaning Use of stack
o) Stack literal intecger +1

1 Stack literal character +1

2 Stack value of integer variable +1

3 Stack value of character variable +1

4 Stack address of variable +1

5 Stack address of dorpe vector o +.

6 End of AT statement -

7 Statement number -

8 AT separator chain ‘ -

9 AT word-pattern chain o -

10 GOTO statement -
11-15 Not used -

16 . Null statement -

17 GO TO O statement -

18 Start of PRINT -

19 Start of WARN -

20 STOP statement -

21 Subtract -2,+1
22 Add -2,+1
23 Divide -2,+1
24 Multiply -2,+1
25 Subscript value (integer) -2,+1
26 Subscript valie (character) : ~2,+1
27 Subscript address (integer) -2,+1
28 Subscript address (character) ~-2,+1
29 TO (integer) -2

30 TO (character) -2

31 Assign (integer) -2

32 Assign (character) -2

33 = -2

34 < -2

35 LE -2

36 > ‘ -2

37 GE -2

Code

.3/6

Meaning

NE

Unary minus

Left parenthesis

Output (integer)

Output (character)
Comment

End of output statement
Right parenthesis

Long character constant

Use of stack

