THE ML/I MACRO PROCESSOR

Imnplementing software using the LOWL language

Supplement 1: ALGEBRA

P.J. Brown

Computing Laboratory

University of Kent at Canterbury
September 1972,

(:::) 1972 P.J. Brown

1/1
Chapter 1 HMD-logic and LOWL extensions

ALGEBRA is a package for students and research workers
in Boolean algebra and multi-valued logics. It is described in
Bulletin Inst. Maths. Applics. 7, 11 (Nov. 1971) and, in more
complete detail, in user manuals for the varicus implementations
(e.g. Brown, P.J. "The ALGEBRA system", Kent On-line System
Document KUSE/ALGEBRA). This document assumes that the imple-
mentor is familiar with the principles of ALGEBRA as given in a
user manual. '

I/0 requirements

- ALGEBRA logically requires three output streams and one
input stream. The output streams are the message and results
streams, as described in the LOWL manual, and the questions stream,
which is used to output all the questions that ALGEBRA asks of
its user (e.g. "VALUES="). 1In a simple conversational implemen-
tation all four I/0 streams may correspond to the same device,
an on-line console. However, provision may be made for the
results stream, which is used for output produced by the TABLE
and TRY statements, to go to a line-printer or perhaps to backing
storage.

In a non~conversational environment the questions
stream requires special treatment as it is not possible to com-
municate directly with the user. One possible approach is to
suppress all questions. This is trivial to implement. A second app-
roach is to require the input lines to contain both the question
and the answer. Thus an input line, a card say, might read

VALUES = TRUE FALSE

The question part is used as an error cdeck to prevent the input
getting out of phase with what ALGEBRA expects. This second
approach requires significant extra work for the implementor,
which in detail is as follows. Questions should be sent to an
intermediate buffer, and, when an input line is read the follow-
ing action would be taken:

(a) if the questibns buffer is empty go to step (e).

(b) check the questions buffer character by character
against the input line, ignoring spaces. If there
is a mis-match before the end of the questions
buffer is reached, output an error message and stop.

(c) clear the questions buffer.

1/2

(4) update pointers, etc., so that the question part is
not treated as part of the input line.

(e) proceed with input line in the normal way.

Breaks

If ALGEBRA is to run in a conversational environment,
it is desirable to cater for "breaks", i.e. cases where the user
stops ALGEBRA by pressing some special key. The user may, for
example, wish to break ALGEBRA when it is outputting a very large
table so that he can make some change. The MI-logic has been
designed so that it can accept such breaks at any time without
losing any information (i.e. the names of values and the defin-
itions of operators).

'If an implementor decides to cater for breaks it is
suggested he writes MD-logic code to perform the following action
at each break:

MESS '$***BREAKS'

LAV INFFPT,X
CAL o

'GONE NEXTLN, . .. (label in MI-logic)
GOSUB MDQUIT,X |

This means abandon the run if no values have yet been ,
defined, otherwise go to the code in the MI-logic which resumes

opcration by reading the next line of input.

Extensions to LOWL

ALGEBRA requires two extra statements in addition to
the kernel of LOWL. These are the RMESS and QMESS statements,
which are identical in form to the MESS statement except that
the string is output, respectively, on the results and question
streams. Examples are .

QMESS 'VALUES='

RMESS ‘IS A CONTINGENCY$'

1/3

The form of the MD-logic

‘Inmediately on being entered, ALGEBRA should zeroize
the variable INFFPT. This is done to tell the routine that
caters for breaks, if it exists, that no values have yet been
defined. Breaks can be accepted at any time after INFFPT has
been cleared. The common initialization code, as given in the
LOWL manual, should then be performed. The stack area need not
be large - 300 words should be adequate unless use with compli-
cated multi-valued logics is envisaged.

In addition to this, the MD-logic of ALGEBRA requires

the MDQUIT subroutine, as described in the LOWL manual, and the
subroutines described below.

The MDERCH, MDRCH, MDQCH subroutines

The MDERCH, MDRCH and MDQCH subroutines output the
character in C on the message, results and questions stream,
respectively. Each has a single exit.

The MDLINE subroutine

. MDLINE is a subroutine with two exits. It reads lines
of input. If input is exhausted it uses exit 1. Otherwise it
reads a line of input into a buffer, sets IBFPT to point at the
first character of the buffer and uses exit 2. (IBFPT should be
reset on each call of MDLINE, since the MI-logic changes it.)

The text in the buffer should be terminated with a newline charac-—
ter (as represented by NLREP). (Thus, for example, a null input
line would cause the buffer to contain simply a single newline
character.)

MDLINE is used both for answers to questions and for
ordinary input. In the case of questions it is desirable for the
answer to be on the same line as the guestion. Hence when a
question is output (using QMESS and/or MDQCH) it is not terminated
with a newline.

If the implementor wishes to produce a gold-plated
version of ALGEBRA, he should cater for switches of input stream.
Users may wish to input some predefined definitions from a non-
conversational device, for example from backing storage or from
a paper tape reader, and then to use these at an on-line console.
This has implications on the coding of MDLINE and perhaps also
of the initialisation code.

2/1
Chapter 2 Testing an implementation of ALGEBRA

This Chapter contains some test data which can be used
to validate an implementation of ALGEBRA. This data needs to be
supplemented by tests of the machine-dependent features of the
implementation. Unforimn:-"~" _he nature of ALGEBRA does not
allow the data to be zcli-cheukire in any way, so the implementor
needs to go through the output from the test line by line to
check that the output is what it zilipould be. (Alternatively a
program might be written to perfcrm this comparison, the inputs
being what the implementation should produce as output and what
it actually does produce. It is very doubtful, however, whether
the effort needed to produce this program and punch up the data
for it would be worthwhile, unless part of a larger project.)

The test data

The test data consists of three separate tests, cover-
ing one~valued, ttro-valued and three-valued logics. It is reason-
able to suppose that if these work then all multi-valued logics
will work. N

In the descriptions that follow the input lines for
each test begin with three dots, the output produced on the
messages stream begins with three asterisks and the remaining
lines are output produced on the results stream. Where an input
‘line is an answer to a question the guestion is given at the
start of the input line, exactly as it might look on, say, an arlire
gypevwriter.For example the initial input line might be specified

.-« VALUES =T F

The first test deals with a one-valued logic and.is

simply a path-finding test to make sure the main features of _—

ALGEBRA are working. The test is as follows.

« « « VALUES=SINGLE

«+.0OP +

e« TITARY OR BINARY=BINARY
« » PRECIDENCE=15

e ¢ o SIMCLE + SINGLE=SINGLE
ee o TRY A+B

=SINGLE

... TABLE AA+BB

AA____ BB____ ;-VALUE
SINGLE SINGLE : SINGLE
e e .oP NOT

«« «UNARY OR BINARY=UNARY

2/2

. « . PRECEDENCE=1
« « «NOT SINGLE=SINGLE
o+ oTABLE + ; ERROR LINE

***ERROR IN USE OF BINARY OPERATOR +
.«.TRY NOT A+B
= SINGLE

«++ ;END OF TEST

The second test,which is a comprehensive one, covers
a two-valued logic. The test precedes as follows. Firstly a
set of operators is defined, a large number of errors being made,
and corrected, during this process. There follows a series of
statements, all of which contain errors. The TRY statement is
then tested, firstly with a series of expressions all of which
should be TRUE, then with a series of FALSE expressions and '
finally with some contingencies. This is followed by a series
of tables, which need to be carefully checked by the tester.
The test concludes by redefining an existing operator, and check-
ing the new definition. 1In detail, the test is as follows.

« « « VALUES=(

***ERROR ~- CLASHING USE OF SYMBOL
« » « VALUES=X+

***ERROR -~- ILLEGAL SYMBOL

o « « VALUES=

***ERROR ~-- INCOMPLETE LINE

.« . VALUES=TRUE FALSE

ce) RRARXXXXXPTRST DEFINE SOME OPERATORS*********

«..0P +; EXCLUSIVE OR
.+ .UNARY OR BINARY=

**XEH

«+ «UNARY OR BINARY=UN X
***kEH

.+ .UNARY OR BINARY=UXARY
*k*EH

e« . UNARY OR BINARY=BINARY
« « « PRECEDENCE=

**kEH

« « . PRECEDENCE=5X

* % *PH

« « « PRECEDENCE=-1

*kkPH

« « « PRECEDENCE=1 X

*k kRH

« « « PRECEDENCE=1001

1 2/3

***EH

. « « PRECEDENCE=1
«+.TRUE + TRUB=

***EH

«« «TRUE 4+ TRUE=TRUE X
**XEH

e« TRUE + TRUE=+

*k XRY

«+.TRUE + TRUE= FALSE
.+ .TRUE + FALSE=TRUE
.« .FALSE + TRUE=TRUE
«+ +FALSE + FALSE=FALSE

[3
seocyp

. . .OPERATOR~ | ~

+ « « UJNARY OR BINARY=UNARY
« « « PRECEDENCE=999

e+ «= TRUE=FALS

*k*tTH

e+~ TRUE=FALSE

«o o= FALSE=

* kAR

e+« FALSE=+

*%**BH

o s o~ FALSE=TRUE

.+ .OPERATOR NOT ; LOW PRECEDENCE NEGATION
«+ - UNARY OR BINARY=UNARY
« « « PRECEDENCE=0

« « . NOT TRUE=FALSE

« « .NOT FALSE=TRUE
«+«+OPER X

o+ « UNARY OR BINARY=BIN

« « « PRECEDENCE=2

»» «TRUE X TRUE=TRUE
«++TRUE X FALSE=FALSE

«+ FALSE X TRUE=FALSE

.+ +FALSE X FALSE=FALSE

« « +OPERATOR > ; IMPLIES OPERATOR
.« UNARY OR BINARY=BIN

« « « PRECEDENCE=3

«+««TRUE > TRUE=TRUE

«+ +TRUE > FALSE=FALSE

« « o FALSE > TRUE=TRUE
«+.FALSE > FALSE=TRUE

oos s RRRXRAXAATHE FOLLOWING STATEMENTS ALL CONTAIN ERRORS**%%kkka
-+ .BBB

***ERROR ~— UNRECOGNISED STATEMENT

. XYZH)

***ERROR

««.0P TRUE

** *ERROR
««.0P

***ERROR
oo OP(

***ERROR
« o « TABLE
***ERROR
« « « TABLE
***ERROR
.+« .TABLE
***ERROR
«..TABLE
***ERROR
L] TABLE
***ERROR
.« «TABLE
***ERROR
«+ «TABLE
***ERROR

. « .TABLE)

***ERROR
.« . TABLE
***ERROR
o « « TABLE
***ERROR
« « « TABLE
***ERROR
.« « TABLE
***ERROR
+ « « TABLE
***ERROR
-+ « TABLE
***ERROR
..+ TRY

***ERROR

2/4

UNRECOGNISED STATENMSNT

-~ CLASHING USE OF SYMBOL

INCOMPLETE LINE
CLASHING USE OF SYMBOL
INCOMPLETE LINE

INCOMPLETE LINE
TRUE+FALSE

-~ NO VARIABLES

AX B

IN USE OF
AX FALSE
IN USE OF
A (B+3)

IN USE OF
A+B)

IN USE OF

IN USE OF
A NOR

IN USE OF
A NOT B
IN USE OF
+B

IN USE OF
F+(+B)

IN USE OF
(A

IN USE OF

VARIABLE B

VALUE FALSE
PARENTHESES
PARENTHESES
PARENTHESES
VARIABLE NOR
UNARY OPERATOR NOT
BINARY OPERATOR +
BINARY OPERATOR +

PARENTHESES

((noT 2) > (B)

IN USE OF

PARENTHESES

-= INCOMPLETE LINE

L N 3 .TRY
#**ERROR
LI FRAREXKARTHE FOLLOWING SHOULD ALL BE TRUEA**%k###
. «.TRY TRUE

= TRUE

s RS - 04 W T R s A S S D G ST WD WP SHD ST GRS o G Sre S D D M B P G S D AR G G D D GED WP G PP SEP D SED D Voe Shb G Gue WHL GHR G G @b S b

-~ EXPRESSION TOO COMPLICATED

««.TR NOT FALSE
=TRUE

o « « TRYFORMEPLEASE NOT-TRUE
= TRUE

2/5

«+..TRY TRUE X TRUE
= TRUE

...TRY, ,TRUE, ,X,NOT,,,FALSE,,;
= TRUE

«+.TRY NOT-~FALSE X TRUE
=TRUE

.+« .TRY FALSE> (TRUE+TRUE)
= TRUE

o « « TRY (TRUE+FALSE) >TRUE
= TRUE

« s o TRY A+-A+XX+-XX+C+(-(C))
= TRUE

... TRY TRUE+A X ~A
= TRUE

...TRY NOT FALSE X FALSE
= TRUE

oo «TRY ((((TRUE)))X TRUE)
= TRUE

oe e pX¥RERARAATHE FOLLOWING SHOULD ALL BE FALSE*%kxx%kk%
« «.TRY FALSE>TRUE+TRUE; > IS DONE FIRST
= FALSE

« « « TRY TRUE+FALSE>TRUE
= FALSE

««+TRY A X-A
= FALSE '

cos TRY A X-A
= FALSE

eocysrsTRY A+A
= FALSE

..«TRY -A X A
= FALSE

ee.jXXRXXXXXSTHE FOLLOWING SHOULD ALL BE CONTINGENCIESHd %k ki
...TRY PIG
IS A CONTINGENCY

2/6

...TRY NOT A X A
IS A CONTINGENCY

«» «TRY A+B+C+D+E+F+G
IS A CONTINGENCY

coejkRkkkkkkkXTEST THE TABLE STATEMENT**%%¥%%%%
«eoTA XYZ

XYz : VALUE
TRUE s TRUE
FALSE : FALSE

A B ¢ VALUE
TRUE TRUE ¢ TRUE
TRUE FALSE : FALSE
FALSE TRUE ¢ FALSE
FALSE FALSE ¢ TRUE

2 LONGNA C D ¢ VALUE
TRUE TRUE TRUE TRUE FALSE
TRUE TRUE TRUE FALSE : FALSE
TRUE TRUE FALSE TRUE : TRUE
TRUE TRUE FALSE FALSE ¢ TRUE
TRUE FALSE TRUE TRUE ¢ TRUE
TRUE FALSE TRUE FALSE ¢ TRUE
TRUE FALSE FALSE TRUE ¢ FALSE
TRUE FALSE FALSE FALSE : FALSE
FALSE TRUE TRUE TRUE ¢ TRUE
FALSE TRUE TRUE FALSE : TRUE
FALSE TRUE FALSE TRUE ¢ TRUE
FALSE TRUE FALSE FALSE ¢ TRUE
FALSE FALSE TRUE TRUE ¢ TRUE
FALSE FALSE TRUE FALSE ¢ TRUE
FALSE FALSE FALSE TRUE : TRUE
FALSE FALSE FALSE FALSE ¢ TRUE

2/7

LI N 4

ce e ;*********REDEFINE AN OPERATOR*********
eeOP >
« .+ UNARY OR BINARY=BI
. « . PRECEDENCE=10
+««.TRUE > TRUE=FALSE
«++.TRUE > FALSE=TRUE.-
« +« FALSE > TRUE=FALSE
«+ +FALSE > FALSE=FALSE
o+ TRY A>A; THIS SHOULD NOW BE FALSE
= FALSE
o~
«s«3;END OF TEST -

Phe third and last test covers a three-valued.logic.
The test is short and contains little that is not covered by the
previous test, and thus should cause few problems. It is as
follows.

LN CVALUESw'l'z

«+« OPERATOR -

.« UNARY OR BINARY=BINARY
« « « PRECEDENCE=2

ees0 = 0O=0

eeeD = 1=2

0000 - 2=1

eeel = 0=1

eeel = 1=0

oool - 2=2 .

eeel = 0=2 o~
0002 - 1=1 . ’
0002 - 230

eoo s ¥RXAXRRXXPHE FOLLOWING SHOULD ALL BE O##adaikiw
++.TRY O
=0

+++TRY FISH-FISH
=0

L BN} .Tm 2-1-1
=0

. e .TRY 2- (1”1) -2
=0

2/8

coo s RERRRKXXXXNOW PRINT 2 TABLE***% %%k
« . .TABLE (A-B)-(C-3)

3
v+)
(@]
<
E
=

00 oe 06 0co o0 ee

OFNHENONOFRFENONOFOFNNOFORNMDIMNGD

9% 00 00 OoF ee &0

NNVNNNNNNVNNNHEE R R RSO0 0000000
VNN EREEHEQOONMNNVNREEMOOONMNNNNEEREROOOO
NEHEOMNMMHONHFONKFOMNMEFHFONKMONIMRMONMNMKEFONEOD

0 08 08 J¢ 00 00 o

+.+;END OF TEST

Testing of implementation dependent features

The given test data needs to be supplemented by tests
of implementation-dependent features. Areas to be tested may
include:

(a) Operating system interface. Entry, exit,
sudden termination (e.g. in the middle of
an operator definition), a null run, a run
with little or no storage for the stack area.

(b)

(c)

2/9

Breaks. Breaks during input, output and
in reply to a question. Breaks before
values have been defined. Recovery from
breaks.

Input/output. I/O options, incorrectly
specified I/0 devices, overflow conditions
(lines too long, etc.), switching of input
stream (if available). ,

